Source code for autogluon.timeseries.models.gluonts.torch.models

"""
Module including wrappers for PyTorch implementations of models in GluonTS
"""
import logging
import shutil
import warnings
from datetime import timedelta
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Type

import gluonts
import numpy as np
import pandas as pd
import torch
from gluonts.core.component import from_hyperparameters
from gluonts.model.forecast import QuantileForecast
from gluonts.torch.distributions import AffineTransformed
from gluonts.torch.model.deepar import DeepAREstimator
from gluonts.torch.model.estimator import PyTorchLightningEstimator as GluonTSPyTorchLightningEstimator
from gluonts.torch.model.forecast import DistributionForecast
from gluonts.torch.model.predictor import PyTorchPredictor as GluonTSPyTorchPredictor
from gluonts.torch.model.simple_feedforward import SimpleFeedForwardEstimator
from gluonts.torch.model.tft import TemporalFusionTransformerEstimator
from pytorch_lightning.callbacks import Timer

from autogluon.core.hpo.constants import CUSTOM_BACKEND
from autogluon.core.utils.loaders import load_pkl
from autogluon.timeseries.dataset.ts_dataframe import TimeSeriesDataFrame
from autogluon.timeseries.models.gluonts.abstract_gluonts import AbstractGluonTSModel
from autogluon.timeseries.utils.warning_filters import torch_warning_filter

# FIXME: introduces cpflows dependency. We exclude this model until a future release.
# from gluonts.torch.model.mqf2 import MQF2MultiHorizonEstimator

# FIXME: DeepNPTS does not implement the GluonTS PyTorch API, and does not use
# PyTorch Lightning. We exclude this model until a future release.
# from gluonts.torch.model.deep_npts import DeepNPTSEstimator


logger = logging.getLogger(__name__)
gts_logger = logging.getLogger(gluonts.__name__)
pl_loggers = [logging.getLogger(name) for name in logging.root.manager.loggerDict if "pytorch_lightning" in name]


class AbstractGluonTSPyTorchModel(AbstractGluonTSModel):
    gluonts_estimator_class: Type[GluonTSPyTorchLightningEstimator]
    float_dtype: Type = np.float32

    def _get_hpo_backend(self):
        return CUSTOM_BACKEND

    def _get_estimator_init_args(self) -> Dict[str, Any]:
        """Get GluonTS specific constructor arguments for estimator objects, an alias to
        `self._get_model_params` for better readability."""
        init_kwargs = self._get_model_params()

        # GluonTS does not handle context_length=1 well, and sets the context to only prediction_length
        # we set it to a minimum of 10 here.
        init_kwargs["context_length"] = max(10, init_kwargs.get("context_length", self.prediction_length))
        init_kwargs.setdefault("lr", init_kwargs.get("learning_rate", 1e-3))

        return init_kwargs

    def _get_estimator(self) -> GluonTSPyTorchLightningEstimator:
        """Return the GluonTS Estimator object for the model"""

        # As GluonTSPyTorchLightningEstimator objects do not implement `from_hyperparameters` convenience
        # constructors, we re-implement the logic here.
        # we translate the "epochs" parameter to "max_epochs" for consistency in the AbstractGluonTSModel
        # interface

        init_args = self._get_estimator_init_args()

        trainer_kwargs = {}
        epochs = init_args.get("max_epochs", init_args.get("epochs"))
        callbacks = init_args.get("callbacks", [])

        # TODO: Provide trainer_kwargs outside the function (e.g., to specify # of GPUs)?
        if epochs is not None:
            trainer_kwargs.update({"max_epochs": epochs})
        trainer_kwargs.update({"callbacks": callbacks, "enable_progress_bar": False})
        trainer_kwargs["default_root_dir"] = self.path

        if torch.cuda.is_available():
            trainer_kwargs["accelerator"] = "gpu"
            trainer_kwargs["devices"] = 1

        return from_hyperparameters(
            self.gluonts_estimator_class,
            trainer_kwargs=trainer_kwargs,
            **init_args,
        )

    def _get_callbacks(self, time_limit: int, *args, **kwargs) -> List[Callable]:
        return [Timer(timedelta(seconds=time_limit))] if time_limit is not None else []

    def _fit(
        self,
        train_data: TimeSeriesDataFrame,
        val_data: Optional[TimeSeriesDataFrame] = None,
        time_limit: int = None,
        **kwargs,
    ) -> None:
        verbosity = kwargs.get("verbosity", 2)
        for pl_logger in pl_loggers:
            pl_logger.setLevel(logging.ERROR if verbosity <= 3 else logging.INFO)
        super()._fit(train_data=train_data, val_data=val_data, time_limit=time_limit, **kwargs)
        lightning_logs_dir = Path(self.path) / "lightning_logs"
        if lightning_logs_dir.exists() and lightning_logs_dir.is_dir():
            logger.debug(f"Removing lightning_logs directory {lightning_logs_dir}")
            shutil.rmtree(lightning_logs_dir)

    def save(self, path: str = None, **kwargs) -> str:
        # we flush callbacks instance variable if it has been set. it can keep weak references
        # which breaks training
        self.callbacks = []
        return super().save(path, **kwargs)

    @classmethod
    def load(cls, path: str, reset_paths: bool = True, verbose: bool = True) -> "AbstractGluonTSModel":
        with torch_warning_filter():
            model = load_pkl.load(path=path + cls.model_file_name, verbose=verbose)
            if reset_paths:
                model.set_contexts(path)
            model.gts_predictor = GluonTSPyTorchPredictor.deserialize(Path(path) / cls.gluonts_model_path)
        return model

    @staticmethod
    def _distribution_to_quantile_forecast(
        forecast: DistributionForecast, quantile_levels: List[float]
    ) -> QuantileForecast:
        forecast_arrays = [forecast.mean]

        quantile_keys = [str(q) for q in quantile_levels]
        if isinstance(forecast.distribution, AffineTransformed):
            # FIXME: Fix a bug where distribution parameters aren't moved to CPU
            affine_transform = forecast.distribution.transforms[-1]
            affine_transform.scale = affine_transform.scale.cpu()
            affine_transform.loc = affine_transform.loc.cpu()

        q_transformed = [forecast.quantile(q) for q in quantile_keys]

        forecast_arrays.extend(q_transformed)
        forecast_init_args = dict(
            forecast_arrays=np.array(forecast_arrays),
            start_date=forecast.start_date,
            forecast_keys=["mean"] + quantile_keys,
            item_id=str(forecast.item_id),
        )
        if isinstance(forecast.start_date, pd.Timestamp):  # GluonTS version is <0.10
            forecast_init_args.update({"freq": forecast.freq})
        return QuantileForecast(**forecast_init_args)


[docs]class DeepARModel(AbstractGluonTSPyTorchModel): """DeepAR model from GluonTS based on the PyTorch backend. The model consists of an LSTM encoder and a decoder that outputs the distribution of the next target value. Close to the model described in [Salinas2020]_. Based on `gluonts.torch.model.deepar.DeepAREstimator <https://ts.gluon.ai/stable/api/gluonts/gluonts.torch.model.deepar.html>`_. References ---------- .. [Salinas2020] Salinas, David, et al. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks." International Journal of Forecasting. 2020. Other Parameters ---------------- context_length : int, optional Number of steps to unroll the RNN for before computing predictions (default: None, in which case context_length = prediction_length) disable_static_features : bool, default = False If True, static features won't be used by the model even if they are present in the dataset. If False, static features will be used by the model if they are present in the dataset. disable_known_covariates : bool, default = False If True, known covariates won't be used by the model even if they are present in the dataset. If False, known covariates will be used by the model if they are present in the dataset. num_layers : int, default = 2 Number of RNN layers hidden_size : int, default = 40 Number of RNN cells for each layer dropout_rate : float, default = 0.1 Dropout regularization parameter embedding_dimension : int, optional Dimension of the embeddings for categorical features (if None, defaults to [min(50, (cat+1)//2) for cat in cardinality]) distr_output : gluonts.torch.distributions.DistributionOutput, default = StudentTOutput() Distribution to use to evaluate observations and sample predictions scaling: bool, default = True Whether to automatically scale the target values epochs : int, default = 100 Number of epochs the model will be trained for batch_size : int, default = 64 Size of batches used during training num_batches_per_epoch : int, default = 50 Number of batches processed every epoch learning_rate : float, default = 1e-3, Learning rate used during training """ gluonts_estimator_class: Type[GluonTSPyTorchLightningEstimator] = DeepAREstimator default_num_samples: int = 250 supports_known_covariates = True def _get_estimator_init_args(self) -> Dict[str, Any]: init_kwargs = super()._get_estimator_init_args() init_kwargs["num_feat_static_cat"] = self.num_feat_static_cat init_kwargs["num_feat_static_real"] = self.num_feat_static_real init_kwargs["cardinality"] = self.feat_static_cat_cardinality init_kwargs["num_feat_dynamic_real"] = self.num_feat_dynamic_real return init_kwargs
[docs]class SimpleFeedForwardModel(AbstractGluonTSPyTorchModel): """SimpleFeedForward model from GluonTS based on the PyTorch backend. The model consists of a multilayer perceptron (MLP) that predicts the distribution of all the target value in the forecast horizon. Based on `gluonts.torch.model.simple_feedforward.SimpleFeedForwardEstimator <https://ts.gluon.ai/stable/api/gluonts/gluonts.torch.model.simple_feedforward.html>`_. See GluonTS documentation for additional hyperparameters. Other Parameters ---------------- context_length : int, optional Number of time units that condition the predictions (default: None, in which case context_length = prediction_length) hidden_dimensions: List[int], default = [20, 20] Size of hidden layers in the feedforward network distr_output : gluonts.torch.distributions.DistributionOutput, default = StudentTOutput() Distribution to fit. batch_normalization : bool, default = False Whether to use batch normalization mean_scaling : bool, default = True Scale the network input by the data mean and the network output by its inverse epochs : int, default = 100 Number of epochs the model will be trained for batch_size : int, default = 64 Size of batches used during training num_batches_per_epoch : int, default = 50 Number of batches processed every epoch learning_rate : float, default = 1e-3, Learning rate used during training """ gluonts_estimator_class: Type[GluonTSPyTorchLightningEstimator] = SimpleFeedForwardEstimator
[docs]class TemporalFusionTransformerModel(AbstractGluonTSPyTorchModel): """TemporalFusionTransformer model from GluonTS. The model combines an LSTM encoder, a transformer decoder, and directly predicts the quantiles of future target values. As described in [Lim2021]_. Based on `gluonts.torch.model.tft.TemporalFusionTransformerEstimator <https://ts.gluon.ai/stable/api/gluonts/gluonts.torch.model.tft.html>`_. See GluonTS documentation for additional hyperparameters. References ---------- .. [Lim2021] Lim, Bryan, et al. "Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting." International Journal of Forecasting. 2021. Other Parameters ---------------- context_length : int, default = 64 Number of past values used for prediction. disable_static_features : bool, default = False If True, static features won't be used by the model even if they are present in the dataset. If False, static features will be used by the model if they are present in the dataset. disable_known_covariates : bool, default = False If True, known covariates won't be used by the model even if they are present in the dataset. If False, known covariates will be used by the model if they are present in the dataset. disable_past_covariates : bool, default = False If True, past covariates won't be used by the model even if they are present in the dataset. If False, past covariates will be used by the model if they are present in the dataset. hidden_dim : int, default = 32 Size of the LSTM & transformer hidden states. variable_dim : int, default = 32 Size of the feature embeddings. num_heads : int, default = 4 Number of attention heads in self-attention layer in the decoder. dropout_rate : float, default = 0.1 Dropout regularization parameter epochs : int, default = 100 Number of epochs the model will be trained for batch_size : int, default = 64 Size of batches used during training num_batches_per_epoch : int, default = 50 Number of batches processed every epoch learning_rate : float, default = 1e-3, Learning rate used during training """ gluonts_estimator_class: Type[GluonTSPyTorchLightningEstimator] = TemporalFusionTransformerEstimator supports_known_covariates = True supports_past_covariates = True def _get_estimator_init_args(self) -> Dict[str, Any]: init_kwargs = super()._get_estimator_init_args() init_kwargs.setdefault("context_length", max(64, self.prediction_length)) if self.num_feat_dynamic_real > 0: init_kwargs["dynamic_dims"] = [self.num_feat_dynamic_real] if self.num_past_feat_dynamic_real > 0: init_kwargs["past_dynamic_dims"] = [self.num_past_feat_dynamic_real] if self.num_feat_static_real > 0: init_kwargs["static_dims"] = [self.num_feat_static_real] if len(self.feat_static_cat_cardinality): init_kwargs["static_cardinalities"] = self.feat_static_cat_cardinality return init_kwargs