Reference: Auto components#

This section is a reference for high-level composite components showcased in sections above.

autogluon.eda.analysis.auto#

dataset_overview

Shortcut to perform high-level datasets summary overview (counts, frequencies, missing statistics, types info).

target_analysis

Target variable composite analysis.

quick_fit

This helper performs quick model fit analysis and then produces a composite report of the results.

missing_values_analysis

Perform quick analysis of missing values across datasets.

covariate_shift_detection

Shortcut for covariate shift detection analysis.

analyze_interaction

This helper performs simple feature interaction analysis.

analyze

This helper creates BaseAnalysis wrapping passed analyses into Sampler if needed, then fits and renders produced state with specified visualizations.

dataset_overview#

autogluon.eda.auto.simple.dataset_overview(train_data: Optional[DataFrame] = None, test_data: Optional[DataFrame] = None, val_data: Optional[DataFrame] = None, label: Optional[str] = None, state: Union[None, dict, AnalysisState] = None, return_state: bool = False, sample: Union[None, int, float] = None, fig_args: Optional[Dict[str, Dict[str, Any]]] = None, chart_args: Optional[Dict[str, Dict[str, Any]]] = None)[source]#

Shortcut to perform high-level datasets summary overview (counts, frequencies, missing statistics, types info).

Supported fig_args/chart_args keys:
  • feature_distance - feature distance dendrogram chart

Parameters
  • train_data (Optional[DataFrame], default = None) – training dataset

  • test_data (Optional[DataFrame], default = None) – test dataset

  • val_data (Optional[DataFrame], default = None) – validation dataset

  • label (: Optional[str], default = None) – target variable

  • state (Union[None, dict, AnalysisState], default = None) – pass prior state if necessary; the object will be updated during anlz_facets fit call.

  • return_state (bool, default = False) – return state if True

  • sample (Union[None, int, float], default = None) – sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

  • fig_args (Optional[Dict[str, Any]], default = None,) – figures args for vizualizations; key == component; value = dict of kwargs for component figure

  • chart_args (Optional[Dict[str, Any]], default = None,) – figures args for vizualizations; key == component; value = dict of kwargs for component chart

Examples

>>> import autogluon.eda.analysis as eda
>>>
>>> auto.dataset_overview(
>>>     train_data=df_train, test_data=df_test, label=target_col,
>>>     chart_args={'feature_distance': dict(orientation='left')},
>>>     fig_args={'feature_distance': dict(figsize=(6,6))},
>>> )

target_analysis#

autogluon.eda.auto.simple.target_analysis(train_data: DataFrame, label: str, test_data: Optional[DataFrame] = None, problem_type: str = 'auto', fit_distributions: Union[bool, str, List[str]] = True, sample: Union[None, int, float] = None, state: Union[None, dict, AnalysisState] = None, return_state: bool = False) Optional[AnalysisState][source]#

Target variable composite analysis.

Performs the following analysis components of the label field:
  • basic summary stats

  • feature values distribution charts; adds fitted distributions for numeric targets

  • target correlations analysis; with interaction charts of target vs high-correlated features

Parameters
  • train_data (Optional[DataFrame]) – training dataset

  • test_data (Optional[DataFrame], default = None) – test dataset

  • label (: Optional[str]) – target variable

  • problem_type (str, default = 'auto') – problem type to use. Valid problem_type values include [‘auto’, ‘binary’, ‘multiclass’, ‘regression’, ‘quantile’, ‘softclass’] auto means it will be Auto-detected using AutoGluon methods.

  • fit_distributions (Union[bool, str, List[str]], default = False,) – If True, or list of distributions is provided, then fit distributions. Performed only if y and hue are not present.

  • state (Union[None, dict, AnalysisState], default = None) – pass prior state if necessary; the object will be updated during anlz_facets fit call.

  • sample (Union[None, int, float], default = None) – sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

  • return_state (bool, default = False) – return state if True

Return type

state after fit call if return_state is True; None otherwise

Examples

>>> import autogluon.eda.analysis as eda
>>>
>>> auto.target_analysis(train_data=..., label=...)

quick_fit#

autogluon.eda.auto.simple.quick_fit(train_data: DataFrame, label: str, path: Optional[str] = None, val_size: float = 0.3, problem_type: str = 'auto', sample: Union[None, int, float] = None, state: Union[None, dict, AnalysisState] = None, return_state: bool = False, verbosity: int = 0, show_feature_importance_barplots: bool = False, fig_args: Optional[Dict[str, Dict[str, Any]]] = None, chart_args: Optional[Dict[str, Dict[str, Any]]] = None, **fit_args)[source]#

This helper performs quick model fit analysis and then produces a composite report of the results.

The analysis is structured in a sequence of operations:
  • Sample if sample is specified.

  • Perform train-test split using val_size ratio

  • Fit AutoGluon estimator given fit_args; if hyperparameters not present in args, then use default ones

    (Random Forest by default - because it is interpretable)

  • Display report

The reports include:
  • confusion matrix for classification problems; predictions vs actual for regression problems

  • model leaderboard

  • feature importance

  • samples with the highest prediction error - candidates for inspection

  • samples with the least distance from the other class - candidates for labeling

Supported fig_args/chart_args keys:
  • confusion_matrix - confusion matrix chart for classification predictor

  • regression_eval - regression predictor results chart

  • feature_importance - feature importance barplot chart

Parameters
  • train_data (DataFrame) – training dataset

  • label (str) – target variable

  • path (Optional[str], default = None,) – path for models saving

  • problem_type (str, default = 'auto') – problem type to use. Valid problem_type values include [‘auto’, ‘binary’, ‘multiclass’, ‘regression’, ‘quantile’, ‘softclass’] auto means it will be Auto-detected using AutoGluon methods.

  • sample (Union[None, int, float], default = None) – sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

  • val_size (float, default = 0.3) – fraction of training set to be assigned as validation set during the split.

  • state (Union[None, dict, AnalysisState], default = None) – pass prior state if necessary; the object will be updated during anlz_facets fit call.

  • return_state (bool, default = False) – return state if True

  • verbosity (int, default = 0) – Verbosity levels range from 0 to 4 and control how much information is printed. Higher levels correspond to more detailed print statements (you can set verbosity = 0 to suppress warnings). If using logging, you can alternatively control amount of information printed via logger.setLevel(L), where L ranges from 0 to 50 (Note: higher values of L correspond to fewer print statements, opposite of verbosity levels).

  • show_feature_importance_barplots (bool, default = False) – if True, then barplot char will ba added with feature importance visualization

  • fit_args – kwargs to pass into TabularPredictor fit

  • fig_args (Optional[Dict[str, Any]], default = None,) – figures args for vizualizations; key == component; value = dict of kwargs for component figure

  • chart_args (Optional[Dict[str, Any]], default = None,) – figures args for vizualizations; key == component; value = dict of kwargs for component chart

Return type

state after fit call if return_state is True; None otherwise

Examples

>>> import autogluon.eda.analysis as eda
>>>
>>> # Quick fit
>>> state = auto.quick_fit(
>>>     train_data=..., label=...,
>>>     return_state=True,  # return state object from call
>>>     save_model_to_state=True,  # store fitted model into the state
>>>     hyperparameters={'GBM': {}}  # train specific model
>>> )
>>>
>>> # Using quick fit model
>>> model = state.model
>>> y_pred = model.predict(test_data)

missing_values_analysis#

autogluon.eda.auto.simple.missing_values_analysis(graph_type: str = 'matrix', train_data: Optional[DataFrame] = None, test_data: Optional[DataFrame] = None, val_data: Optional[DataFrame] = None, state: Union[None, dict, AnalysisState] = None, return_state: bool = False, sample: Union[None, int, float] = None, **chart_args)[source]#

Perform quick analysis of missing values across datasets.

Parameters
  • graph_type (str, default = 'matrix') –

    One of the following visualization types: - matrix - nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion

    This visualization will comfortably accommodate up to 50 labelled variables. Past that range labels begin to overlap or become unreadable, and by default large displays omit them.

    • bar - visualizes how many rows are non-null vs null in the column. Logarithmic scale can by specifying log=True in kwargs

    • heatmap - correlation heatmap measures nullity correlation: how strongly the presence or absence of one

      variable affects the presence of another. Nullity correlation ranges from -1 (if one variable appears the other definitely does not) to 0 (variables appearing or not appearing have no effect on one another) to 1 (if one variable appears the other definitely also does). Entries marked <1 or >-1 have a correlation that is close to being exactingly negative or positive but is still not quite perfectly so.

    • dendrogram - the dendrogram allows to more fully correlate variable completion, revealing trends deeper than the pairwise ones

      visible in the correlation heatmap. The dendrogram uses a hierarchical clustering algorithm (courtesy of scipy) to bin variables against one another by their nullity correlation (measured in terms of binary distance). At each step of the tree the variables are split up based on which combination minimizes the distance of the remaining clusters. The more monotone the set of variables, the closer their total distance is to zero, and the closer their average distance (the y-axis) is to zero.

  • train_data (Optional[DataFrame]) – training dataset

  • test_data (Optional[DataFrame], default = None) – test dataset

  • val_data – validation dataset

  • state (Union[None, dict, AnalysisState], default = None) – pass prior state if necessary; the object will be updated during anlz_facets fit call.

  • return_state (bool, default = False) – return state if True

  • sample (Union[None, int, float], default = None) – sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

Return type

state after fit call if return_state is True; None otherwise

Examples

>>> import autogluon.eda.auto as auto
>>>
>>> auto.missing_values_analysis(train_data=...)

covariate_shift_detection#

autogluon.eda.auto.simple.covariate_shift_detection(train_data: DataFrame, test_data: DataFrame, label: str, sample: Union[None, int, float] = None, path: Optional[str] = None, state: Union[None, dict, AnalysisState] = None, return_state: bool = False, verbosity: int = 0, **fit_args)[source]#

Shortcut for covariate shift detection analysis.

Detects a change in covariate (X) distribution between training and test, which we call XShift. It can tell you if your training set is not representative of your test set distribution. This is done with a Classifier 2 Sample Test.

Parameters
  • train_data (Optional[DataFrame]) – training dataset

  • test_data (Optional[DataFrame]) – test dataset

  • label (: Optional[str]) – target variable

  • state (Union[None, dict, AnalysisState], default = None) – pass prior state if necessary; the object will be updated during anlz_facets fit call.

  • sample (Union[None, int, float], default = None) – sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

  • path (Optional[str], default = None,) – path for models saving

  • return_state (bool, default = False) – return state if True

  • verbosity (int, default = 0) – Verbosity levels range from 0 to 4 and control how much information is printed. Higher levels correspond to more detailed print statements (you can set verbosity = 0 to suppress warnings). If using logging, you can alternatively control amount of information printed via logger.setLevel(L), where L ranges from 0 to 50 (Note: higher values of L correspond to fewer print statements, opposite of verbosity levels).

  • fit_args – kwargs to pass into TabularPredictor fit

Return type

state after fit call if return_state is True; None otherwise

Examples

>>> import autogluon.eda.auto as auto
>>>
>>> # use default settings
>>> auto.covariate_shift_detection(train_data=..., test_data=..., label=...)
>>>
>>> # customize classifier and verbosity level
>>> auto.covariate_shift_detection(train_data=..., test_data=..., label=..., verbosity=2, hyperparameters = {'GBM': {}})

analyze_interaction#

autogluon.eda.auto.simple.analyze_interaction(x: Optional[str] = None, y: Optional[str] = None, hue: Optional[str] = None, fit_distributions: Union[bool, str, List[str]] = False, fig_args: Optional[Dict[str, Any]] = None, chart_args: Optional[Dict[str, Any]] = None, **analysis_args)[source]#

This helper performs simple feature interaction analysis.

Parameters
  • x (Optional[str], default = None) –

  • y (Optional[str], default = None) –

  • hue (Optional[str], default = None) –

  • fit_distributions (Union[bool, str, List[str]], default = False,) – If True, or list of distributions is provided, then fit distributions. Performed only if y and hue are not present.

  • chart_args (Optional[dict], default = None) – kwargs to pass into visualization component

  • fig_args (Optional[Dict[str, Any]], default = None,) – kwargs to pass into chart figure

Examples

>>> import pandas as pd
>>> import autogluon.eda.auto as auto
>>>
>>> df_train = pd.DataFrame(...)
>>>
>>> auto.analyze_interaction(x='Age', hue='Survived', train_data=df_train, chart_args=dict(headers=True, alpha=0.2))

analyze#

autogluon.eda.auto.simple.analyze(train_data=None, test_data=None, val_data=None, model=None, label: Optional[str] = None, state: Union[None, dict, AnalysisState] = None, sample: Union[None, int, float] = None, anlz_facets: Optional[List[AbstractAnalysis]] = None, viz_facets: Optional[List[AbstractVisualization]] = None, return_state: bool = False, verbosity: int = 2) Optional[AnalysisState][source]#

This helper creates BaseAnalysis wrapping passed analyses into Sampler if needed, then fits and renders produced state with specified visualizations.

Parameters
  • train_data – training dataset

  • test_data – test dataset

  • val_data – validation dataset

  • model – trained Predictor

  • label (str) – target variable

  • state (Union[None, dict, AnalysisState], default = None) – pass prior state if necessary; the object will be updated during anlz_facets fit call.

  • sample (Union[None, int, float], default = None) – sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

  • anlz_facets (List[AbstractAnalysis]) – analyses to add to this composite analysis

  • viz_facets (List[AbstractVisualization]) – visualizations to add to this composite analysis

  • return_state (bool, default = False) – return state if True

  • verbosity (int, default = 2,) – Verbosity levels range from 0 to 4 and control how much information is printed. Higher levels correspond to more detailed print statements (you can set verbosity = 0 to suppress warnings). If using logging, you can alternatively control amount of information printed via logger.setLevel(L), where L ranges from 0 to 50 (Note: higher values of L correspond to fewer print statements, opposite of verbosity levels).

Return type

state after fit call if return_state is True; None otherwise