Contents Menu Expand Light mode Dark mode Auto light/dark mode
AutoGluon 0.7.0 documentation
Light Logo Dark Logo

Get Started

  • Install
  • Tabular Quick Start
  • Multimodal Quick Start
  • Time Series Quick Start

Tutorials

  • Tabular
    • Essentials
    • In Depth
    • Feature Engineering
    • Tabular + Text + Images
    • Advanced
      • Multilabel
      • Kaggle
      • GPU
      • Custom Metrics
      • Custom Models
      • Custom Models Advanced
      • Deployment
  • Multimodal
    • Multimodal Prediction
      • AutoMM for Image + Text + Tabular - Quick Start
      • AutoMM for Multimodal Named Entity Extraction
      • AutoMM for Text + Tabular - Quick Start
    • Object Detection
      • Object Detection Quick Start
        • AutoMM Detection - Quick Start on a Tiny COCO Format Dataset
      • Object Detection Evaluation
        • AutoMM Detection - Evaluate Pretrained YOLOv3 on COCO Format Dataset
        • AutoMM Detection - Evaluate Pretrained Faster R-CNN on COCO Format Dataset
        • AutoMM Detection - Evaluate Pretrained Deformable DETR on COCO Format Dataset
        • AutoMM Detection - Evaluate Pretrained Faster R-CNN on VOC Format Dataset
      • Object Detection Data Preparation
        • Convert Data to COCO Format
        • AutoMM Detection - Prepare Pothole Dataset
        • AutoMM Detection - Prepare Watercolor Dataset
        • AutoMM Detection - Prepare COCO2017 Dataset
        • AutoMM Detection - Prepare Pascal VOC Dataset
        • AutoMM Detection - Convert VOC Format Dataset to COCO Format
      • Object Detection Finetune
        • AutoMM Detection - Fast Finetune on COCO Format Dataset
        • AutoMM Detection - High Performance Finetune on COCO Format Dataset
    • Image Prediction
      • AutoMM for Image Classification - Quick Start
      • CLIP in AutoMM - Zero-Shot Image Classification
    • Text Prediction
      • AutoMM for Text - Quick Start
      • Named Entity Recognition with AutoMM - Quick Start
      • AutoMM for Chinese Named Entity Recognition
      • AutoMM for Text - Multilingual Problems
    • Document Data
      • Categorizing Scanned Documents with AutoMM
    • Matching
      • Image-to-Image Semantic Matching with AutoMM
      • Image-Text Semantic Matching with AutoMM
      • Text-to-Text Semantic Matching with AutoMM
      • Text Semantic Search with AutoMM
      • Image-Text Semantic Matching with AutoMM - Zero-Shot
    • Advanced Topics
      • Hyperparameter Optimization in AutoMM
      • Customize AutoMM
      • Knowledge Distillation in AutoMM
      • Single GPU Billion-scale Model Training via Parameter-Efficient Finetuning
      • Few Shot Learning with FewShotSVMPredictor
      • How to use FocalLoss
      • AutoMM Presets
  • Time Series
    • Quick Start
    • In Depth
    • Model Zoo
  • Cloud Training and Deployment
    • AutoGluon Cloud
    • AutoGluon Tabular on SageMaker AutoPilot
    • Deploy AutoGluon Models on Severless Templates
    • Deploy AutoGluon Models on Amazon SageMaker
    • Cloud Training with Amazon SageMaker
  • EDA
    • Automated Dataset Overview
    • Automated Target Variable Analysis
    • Automated Quick Model Fit
    • Covariate Shift Analysis
    • Feature Interaction Charting
    • References
      • Base APIs
      • Auto Components
    • Components
      • dataset
      • interaction
      • missing
      • model
      • shift
      • transform

Resources

  • Cheat Sheets
  • Versions
  • Tabular FAQ
  • Multimodal FAQ
  • Time Series FAQ

API

  • TabularPredictor
    • TabularPredictor.clone
    • TabularPredictor.clone_for_deployment
    • TabularPredictor.compile_models
    • TabularPredictor.delete_models
    • TabularPredictor.distill
    • TabularPredictor.evaluate
    • TabularPredictor.evaluate_predictions
    • TabularPredictor.explain_classification_errors
    • TabularPredictor.feature_importance
    • TabularPredictor.features
    • TabularPredictor.fit
    • TabularPredictor.fit_extra
    • TabularPredictor.fit_pseudolabel
    • TabularPredictor.fit_summary
    • TabularPredictor.fit_weighted_ensemble
    • TabularPredictor.get_model_best
    • TabularPredictor.get_model_full_dict
    • TabularPredictor.get_model_names
    • TabularPredictor.get_model_names_persisted
    • TabularPredictor.get_oof_pred
    • TabularPredictor.get_oof_pred_proba
    • TabularPredictor.get_size_disk
    • TabularPredictor.get_size_disk_per_file
    • TabularPredictor.info
    • TabularPredictor.interpretable_models_summary
    • TabularPredictor.leaderboard
    • TabularPredictor.load
    • TabularPredictor.load_data_internal
    • TabularPredictor.persist_models
    • TabularPredictor.plot_ensemble_model
    • TabularPredictor.predict
    • TabularPredictor.predict_multi
    • TabularPredictor.predict_proba
    • TabularPredictor.predict_proba_multi
    • TabularPredictor.print_interpretable_rules
    • TabularPredictor.refit_full
    • TabularPredictor.save
    • TabularPredictor.save_space
    • TabularPredictor.set_model_best
    • TabularPredictor.transform_features
    • TabularPredictor.transform_labels
    • TabularPredictor.unpersist_models
  • TabularDataset
  • MultiModalPredictor
    • MultiModalPredictor.evaluate
    • MultiModalPredictor.extract_embedding
    • MultiModalPredictor.fit
    • MultiModalPredictor.fit_summary
    • MultiModalPredictor.get_num_gpus
    • MultiModalPredictor.get_predictor_classes
    • MultiModalPredictor.list_supported_models
    • MultiModalPredictor.load
    • MultiModalPredictor.predict
    • MultiModalPredictor.predict_proba
    • MultiModalPredictor.save
    • MultiModalPredictor.set_num_gpus
    • MultiModalPredictor.set_verbosity
  • TimeSeriesDataFrame
    • TimeSeriesDataFrame.copy
    • TimeSeriesDataFrame.dropna
    • TimeSeriesDataFrame.fill_missing_values
    • TimeSeriesDataFrame.from_data_frame
    • TimeSeriesDataFrame.from_iterable_dataset
    • TimeSeriesDataFrame.from_path
    • TimeSeriesDataFrame.from_pickle
    • TimeSeriesDataFrame.get_reindexed_view
    • TimeSeriesDataFrame.num_timesteps_per_item
    • TimeSeriesDataFrame.slice_by_time
    • TimeSeriesDataFrame.slice_by_timestep
    • TimeSeriesDataFrame.split_by_time
    • TimeSeriesDataFrame.to_regular_index
  • TimeSeriesPredictor
    • TimeSeriesPredictor.evaluate
    • TimeSeriesPredictor.fit
    • TimeSeriesPredictor.fit_summary
    • TimeSeriesPredictor.get_model_best
    • TimeSeriesPredictor.get_model_names
    • TimeSeriesPredictor.info
    • TimeSeriesPredictor.leaderboard
    • TimeSeriesPredictor.load
    • TimeSeriesPredictor.predict
    • TimeSeriesPredictor.refit_full
    • TimeSeriesPredictor.save
    • TimeSeriesPredictor.score
  • FeatureMetadata
    • FeatureMetadata.add_special_types
    • FeatureMetadata.from_df
    • FeatureMetadata.get_feature_type_raw
    • FeatureMetadata.get_feature_types_special
    • FeatureMetadata.get_features
    • FeatureMetadata.get_type_group_map_raw
    • FeatureMetadata.get_type_group_map_special_from_type_map_special
    • FeatureMetadata.get_type_map_special
    • FeatureMetadata.join_metadata
    • FeatureMetadata.join_metadatas
    • FeatureMetadata.keep_features
    • FeatureMetadata.print_feature_metadata_full
    • FeatureMetadata.remove_features
    • FeatureMetadata.rename_features
    • FeatureMetadata.to_dict
Back to top

Cheat Sheet#

Tabular#

https://raw.githubusercontent.com/Innixma/autogluon-doc-utils/main/docs/cheatsheets/stable/autogluon-cheat-sheet.jpeg

Download the PDF version with clickable links tabular-cheatsheet.

Looking for a different version? Refer to the autogluon-doc-utils repo to view all versions of the cheatsheet.

Multimodal#

https://automl-mm-bench.s3-accelerate.amazonaws.com/cheatsheet/v0.7.0/AutoGluon_Multimodal_Cheatsheet_v0.7.0.png

Download the PDF version with clickable links multimodal-cheatsheet.

Time Series#

https://raw.githubusercontent.com/Innixma/autogluon-doc-utils/main/docs/cheatsheets/stable/timeseries/autogluon-cheat-sheet-ts.jpeg

Download the PDF version with clickable links ts-cheatsheet.

Next
Available Documentation for AutoGluon
Previous
Components: transform
Copyright © 2023, All authors. Licensed under Apache 2.0.
Made with Sphinx and @pradyunsg's Furo
On this page
  • Cheat Sheet
    • Tabular
    • Multimodal
    • Time Series