Components: transform#
autogluon.eda.analysis.transform#
This wrapper provides transformed features to all children shadowing outer datasets with the updated one after application of FeatureGenerator. |
ApplyFeatureGenerator#
- class autogluon.eda.analysis.transform.ApplyFeatureGenerator(parent: Optional[AbstractAnalysis] = None, children: Optional[List[AbstractAnalysis]] = None, state: Optional[AnalysisState] = None, category_to_numbers: bool = False, feature_generator: Optional[AbstractFeatureGenerator] = None, **kwargs)[source]#
This wrapper provides transformed features to all children shadowing outer datasets with the updated one after application of FeatureGenerator.
- Parameters
category_to_numbers (bool, default = False) – if True’, then transform `category variables into their codes. This is useful when wrapped analyses expect numeric values
feature_generator (Optional[AbstractFeatureGenerator], default = None) – feature generator to use for the transformation. If None is provided then AutoMLPipelineFeatureGenerator is applied.
parent (Optional[AbstractAnalysis], default = None) – parent Analysis
children (Optional[List[AbstractAnalysis]], default None) – wrapped analyses; these will receive sampled args during fit call
kwargs –
:param See also
autogluon.features.AbstractFeatureGenerator()
:Examples
>>> from autogluon.eda.analysis.base import BaseAnalysis, Namespace >>> import pandas as pd >>> import numpy as np >>> df_train = pd.DataFrame(...) >>> df_test = pd.DataFrame(...) >>> >>> analysis = BaseAnalysis(train_data=df_train, test_data=df_test, label='D', children=[ >>> Namespace(namespace='feature_generator_numbers', children=[ >>> ApplyFeatureGenerator(category_to_numbers=True, children=[ >>> # SomeAnalysis() # This analysis will be called with transformed `train_data` and `test_data` >>> ]) >>> ]), >>> # SomeAnalysis() # This analysis will be called with the original features >>> ])