TimeSeriesDataFrame.fill_missing_values#
- TimeSeriesDataFrame.fill_missing_values(method: str = 'auto', value: float = 0.0) TimeSeriesDataFrame [source]#
Fill missing values represented by NaN.
- Parameters
method (str, default = "auto") –
Method used to impute missing values.
”auto” - first forward fill (to fill the in-between and trailing NaNs), then backward fill (to fill the leading NaNs)
”ffill” or “pad” - propagate last valid observation forward. Note: missing values at the start of the time series are not filled.
”bfill” or “backfill” - use next valid observation to fill gap. Note: this may result in information leakage; missing values at the end of the time series are not filled.
”constant” - replace NaNs with the given constant
value
.”interpolate” - fill NaN values using linear interpolation. Note: this may result in information leakage.
value (float, default = 0.0) – Value used by the “constant” imputation method.
Examples
>>> print(ts_dataframe) target item_id timestamp 0 2019-01-01 NaN 2019-01-02 NaN 2019-01-03 1.0 2019-01-04 NaN 2019-01-05 NaN 2019-01-06 2.0 2019-01-07 NaN 1 2019-02-04 NaN 2019-02-05 3.0 2019-02-06 NaN 2019-02-07 4.0
>>> print(ts_dataframe.fill_missing_values(method="auto")) target item_id timestamp 0 2019-01-01 1.0 2019-01-02 1.0 2019-01-03 1.0 2019-01-04 1.0 2019-01-05 1.0 2019-01-06 2.0 2019-01-07 2.0 1 2019-02-04 3.0 2019-02-05 3.0 2019-02-06 3.0 2019-02-07 4.0