Source code for autogluon.tabular.models.lr.lr_model

import logging
import re
import time
import warnings
from collections import defaultdict

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, QuantileTransformer

from autogluon.common.features.types import R_BOOL, R_INT, R_FLOAT, R_CATEGORY, R_OBJECT, S_TEXT_AS_CATEGORY, S_BOOL
from autogluon.core.constants import BINARY, REGRESSION

from .hyperparameters.parameters import get_param_baseline, INCLUDE, IGNORE, ONLY, _get_solver, preprocess_params_set
from .hyperparameters.searchspaces import get_default_searchspace
from .lr_preprocessing_utils import NlpDataPreprocessor, OheFeaturesGenerator
from autogluon.core.models import AbstractModel
from autogluon.core.utils.exceptions import TimeLimitExceeded

logger = logging.getLogger(__name__)


# TODO: Can Bagged LinearModels be combined during inference to 1 model by averaging their weights?
#  What about just always using refit_full model? Should we even bag at all? Do we care that its slightly overfit?
[docs]class LinearModel(AbstractModel): """ Linear model (scikit-learn): https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html Model backend differs depending on problem_type: 'binary' & 'multiclass': https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html 'regression': https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge """ def __init__(self, **kwargs): super().__init__(**kwargs) self._pipeline = None def _get_model_type(self): penalty = self.params.get('penalty', 'L2') if self.params_aux.get('use_daal', True): # Appears to give 20x training speedup when enabled try: # TODO: Add more granular switch, currently this affects all future LR models even if they had `use_daal=False` from sklearnex.linear_model import LogisticRegression, Ridge, Lasso logger.log(15, '\tUsing sklearnex LR backend...') except: from sklearn.linear_model import LogisticRegression, Ridge, Lasso else: from sklearn.linear_model import LogisticRegression, Ridge, Lasso if self.problem_type == REGRESSION: if penalty == 'L2': model_type = Ridge elif penalty == 'L1': model_type = Lasso else: raise AssertionError(f'Unknown value for penalty "{penalty}" - supported types are ["L1", "L2"]') else: model_type = LogisticRegression return model_type def _tokenize(self, s): return re.split('[ ]+', s) def _get_types_of_features(self, df): """ Returns dict with keys: : 'continuous', 'skewed', 'onehot', 'embed', 'language', values = ordered list of feature-names falling into each category. Each value is a list of feature-names corresponding to columns in original dataframe. """ continuous_featnames = self._feature_metadata.get_features(valid_raw_types=[R_INT, R_FLOAT], invalid_special_types=[S_BOOL]) categorical_featnames = self._feature_metadata.get_features(valid_raw_types=[R_CATEGORY, R_OBJECT]) bool_featnames = self._feature_metadata.get_features(required_special_types=[S_BOOL]) language_featnames = [] # TODO: Disabled currently, have to pass raw text data features here to function properly return self._select_features(df=df, categorical_featnames=categorical_featnames, language_featnames=language_featnames, continuous_featnames=continuous_featnames, bool_featnames=bool_featnames) def _select_features(self, df, **kwargs): features_selector = { INCLUDE: self._select_features_handle_text_include, ONLY: self._select_features_handle_text_only, IGNORE: self._select_features_handle_text_ignore, }.get(self.params.get('handle_text', IGNORE), self._select_features_handle_text_ignore) return features_selector(df=df, **kwargs) # TODO: handle collinear features - they will impact results quality def _preprocess(self, X, is_train=False, **kwargs): if is_train: feature_types = self._get_types_of_features(X) X = self._preprocess_train(X, feature_types, self.params['vectorizer_dict_size']) else: X = self._pipeline.transform(X) return X def _preprocess_train(self, X, feature_types, vect_max_features): transformer_list = [] if feature_types.get('language', None): pipeline = Pipeline(steps=[ ("preparator", NlpDataPreprocessor(nlp_cols=feature_types['language'])), ("vectorizer", TfidfVectorizer(ngram_range=self.params['proc.ngram_range'], sublinear_tf=True, max_features=vect_max_features, tokenizer=self._tokenize)), ]) transformer_list.append(('vect', pipeline, feature_types['language'])) if feature_types.get('onehot', None): pipeline = Pipeline(steps=[ ('generator', OheFeaturesGenerator()), ]) transformer_list.append(('cats', pipeline, feature_types['onehot'])) if feature_types.get('continuous', None): pipeline = Pipeline(steps=[ ('imputer', SimpleImputer(strategy=self.params['proc.impute_strategy'])), ('scaler', StandardScaler()) ]) transformer_list.append(('cont', pipeline, feature_types['continuous'])) if feature_types.get('bool', None): pipeline = Pipeline(steps=[ ('scaler', StandardScaler()) ]) transformer_list.append(('bool', pipeline, feature_types['bool'])) if feature_types.get('skewed', None): pipeline = Pipeline(steps=[ ('imputer', SimpleImputer(strategy=self.params['proc.impute_strategy'])), ('quantile', QuantileTransformer(output_distribution='normal')), # Or output_distribution = 'uniform' ]) transformer_list.append(('skew', pipeline, feature_types['skewed'])) self._pipeline = ColumnTransformer(transformers=transformer_list) return self._pipeline.fit_transform(X) def _set_default_params(self): default_params = {'random_state': 0, 'fit_intercept': True} if self.problem_type != REGRESSION: default_params.update({'solver': _get_solver(self.problem_type)}) default_params.update(get_param_baseline()) for param, val in default_params.items(): self._set_default_param_value(param, val) def _get_default_searchspace(self): return get_default_searchspace(self.problem_type) def _fit(self, X, y, time_limit=None, num_cpus=-1, sample_weight=None, **kwargs): time_fit_start = time.time() X = self.preprocess(X, is_train=True) if self.problem_type == BINARY: y = y.astype(int).values params = {k: v for k, v in self.params.items() if k not in preprocess_params_set} if 'n_jobs' not in params: if self.problem_type != REGRESSION: params['n_jobs'] = num_cpus # Ridge/Lasso are using alpha instead of C, which is C^-1 # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge if self.problem_type == REGRESSION and 'alpha' not in params: # For numerical reasons, using alpha = 0 with the Lasso object is not advised, so we add epsilon params['alpha'] = 1 / (params['C'] if params['C'] != 0 else 1e-8) params.pop('C', None) logger.log(15, f'Training Model with the following hyperparameter settings:') logger.log(15, params) max_iter = params.pop('max_iter', 10000) # TODO: copy_X=True currently set during regression problem type, could potentially set to False to avoid unnecessary data copy. model_cls = self._get_model_type() time_fit_model_start = time.time() if time_limit is not None: time_left = time_limit - (time_fit_model_start - time_fit_start) time_left = time_left - 0.2 # Account for 0.2s of overhead if time_left <= 0: raise TimeLimitExceeded else: time_left = None if time_left is not None and max_iter >= 200 and self.problem_type != REGRESSION: max_iter_list = [100, max_iter-100] else: max_iter_list = [max_iter] fit_args = dict(X=X, y=y) if sample_weight is not None: fit_args['sample_weight'] = sample_weight if len(max_iter_list) > 1: params['warm_start'] = True # Force True total_iter = 0 total_iter_used = 0 total_max_iter = sum(max_iter_list) model = model_cls(max_iter=max_iter_list[0], **params) early_stop = False for i, cur_max_iter in enumerate(max_iter_list): if time_left is not None and (i > 0): time_spent = time.time() - time_fit_model_start time_left_train = time_left - time_spent time_per_iter = time_spent / total_iter time_to_train_cur_max_iter = time_per_iter * cur_max_iter if time_to_train_cur_max_iter > time_left_train: cur_max_iter = min(int(time_left_train / time_per_iter) - 1, cur_max_iter) if cur_max_iter <= 0: logger.warning(f'\tEarly stopping due to lack of time remaining. Fit {total_iter}/{total_max_iter} iters...') break early_stop = True model.max_iter = cur_max_iter with warnings.catch_warnings(): # Filter the not-converged warning since we are purposefully training in increments. # FIXME: Annoyingly, this doesn't filter the warning on Mac due to how multiprocessing works when n_cpus>1. Unsure how to fix. warnings.simplefilter(action='ignore', category=UserWarning) model = model.fit(**fit_args) total_iter += model.max_iter if model.n_iter_ is not None: total_iter_used += model.n_iter_[0] else: total_iter_used += model.max_iter if early_stop: if total_iter_used == total_iter: # Not yet converged logger.warning(f'\tEarly stopping due to lack of time remaining. Fit {total_iter}/{total_max_iter} iters...') break self.model = model self.params_trained['max_iter'] = total_iter def _select_features_handle_text_include(self, df, categorical_featnames, language_featnames, continuous_featnames, bool_featnames): types_of_features = dict() types_of_features.update(self._select_continuous(df, continuous_featnames)) types_of_features.update(self._select_bool(df, bool_featnames)) types_of_features.update(self._select_categorical(df, categorical_featnames)) types_of_features.update(self._select_text(df, language_featnames)) return types_of_features def _select_features_handle_text_only(self, df, categorical_featnames, language_featnames, continuous_featnames, bool_featnames): types_of_features = dict() types_of_features.update(self._select_text(df, language_featnames)) return types_of_features def _select_features_handle_text_ignore(self, df, categorical_featnames, language_featnames, continuous_featnames, bool_featnames): types_of_features = dict() types_of_features.update(self._select_continuous(df, continuous_featnames)) types_of_features.update(self._select_bool(df, bool_featnames)) types_of_features.update(self._select_categorical(df, categorical_featnames)) return types_of_features def _select_categorical(self, df, features): return dict(onehot=features) def _select_continuous(self, df, features): # continuous = numeric features to rescale # skewed = features to which we will apply power (ie. log / box-cox) transform before normalization types_of_features = defaultdict(list) for feature in features: if np.abs(df[feature].skew()) > self.params['proc.skew_threshold']: types_of_features['skewed'].append(feature) else: types_of_features['continuous'].append(feature) return types_of_features def _select_text(self, df, features): return dict(language=features) def _select_bool(self, df, features): return dict(bool=features) def _get_default_auxiliary_params(self) -> dict: default_auxiliary_params = super()._get_default_auxiliary_params() extra_auxiliary_params = dict( valid_raw_types=[R_BOOL, R_INT, R_FLOAT, R_CATEGORY], ignored_type_group_special=[S_TEXT_AS_CATEGORY], ) default_auxiliary_params.update(extra_auxiliary_params) return default_auxiliary_params