Index
search
Quick search
Stable Version Documentation
API
Installation
Tutorials
Github
Other Versions Documentation
Table Of Contents
Tabular Prediction
Predicting Columns in a Table - Quick Start
Predicting Columns in a Table - In Depth
Predicting Columns in a Table - Deployment Optimization
How to use AutoGluon for Kaggle competitions
Multimodal Data Tables: Tabular, Text, and Image
Multimodal Data Tables: Combining BERT/Transformers and Classical Tabular Models
Interpretable rule-based modeling
Training models with GPU support
Predicting Multiple Columns in a Table (Multi-Label Prediction)
Adding a custom model to AutoGluon
Functionality Reference Implementation
Adding a custom model to AutoGluon (Advanced)
Adding a custom metric to AutoGluon
Feature Engineering
FAQ
Multimodal Prediction
Text Data
AutoMM for Text - Quick Start
AutoMM for Text - Multilingual Problems
Named Entity Recognition with AutoMM - Quick Start
AutoMM for Chinese Named Entity Recognition
Image Data – Classification / Regression
AutoMM for Image Classification - Quick Start
CLIP in AutoMM - Zero-Shot Image Classification
Image Data – Object Detection
Quick Start
AutoMM Detection - Quick Start on a Tiny COCO Format Dataset
Data Preparation
AutoMM Detection - Prepare COCO2017 Dataset
AutoMM Detection - Prepare Pascal VOC Dataset
AutoMM Detection - Prepare Watercolor Dataset
Convert Data to COCO Format
AutoMM Detection - Convert VOC Format Dataset to COCO Format
Finetune
AutoMM Detection - Fast Finetune on COCO Format Dataset
AutoMM Detection - High Performance Finetune on COCO Format Dataset
Evaluation
AutoMM Detection - Evaluate Pretrained YOLOv3 on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Faster R-CNN on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Deformable DETR on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Faster R-CNN on VOC Format Dataset
Document Data
Categorizing Scanned Documents with AutoMM
Matching
Text Semantic Search with AutoMM
Text-to-Text Semantic Matching with AutoMM
Image-Text Semantic Matching with AutoMM - Zero-Shot
Image-Text Semantic Matching with AutoMM
Image-to-Image Semantic Matching with AutoMM
Multimodal Data
AutoMM for Image + Text + Tabular - Quick Start
AutoMM for Text + Tabular - Quick Start
AutoMM for Multimodal Named Entity Extraction
Advanced Topics
Single GPU Billion-scale Model Training via Parameter-Efficient Finetuning
Hyperparameter Optimization in AutoMM
Knowledge Distillation in AutoMM
Customize AutoMM
Few Shot Learning with
FewShotSVMPredictor
AutoMM Presets
How to use FocalLoss
FAQ
Time Series Forecasting
Forecasting Time Series - Quick Start
Forecasting Time Series - In Depth
Forecasting Time Series - Model Zoo
FAQ - Time Series
Cloud Training and Deployment
New managed AutoGluon-Tabular experience on Amazon SageMaker Autopilot
AutoGluon Cloud
Cloud Training with AWS SageMaker
Deploying AutoGluon Models with AWS SageMaker
Deploying AutoGluon models with serverless templates
Exploratory Data Analysis Tools
Automated Dataset Overview
Automated Target Variable Analysis
Automated Quick Model Fit
Covariate Shift Analysis
Feature Interaction Charting
Reference: Base APIs
Reference: Auto components
Components: dataset
Components: interaction
Components: missing
Components: model
Components: shift
Components: transform
Cheat Sheet
AutoGluon Predictors
autogluon.features
autogluon.tabular.models
Table Of Contents
Tabular Prediction
Predicting Columns in a Table - Quick Start
Predicting Columns in a Table - In Depth
Predicting Columns in a Table - Deployment Optimization
How to use AutoGluon for Kaggle competitions
Multimodal Data Tables: Tabular, Text, and Image
Multimodal Data Tables: Combining BERT/Transformers and Classical Tabular Models
Interpretable rule-based modeling
Training models with GPU support
Predicting Multiple Columns in a Table (Multi-Label Prediction)
Adding a custom model to AutoGluon
Functionality Reference Implementation
Adding a custom model to AutoGluon (Advanced)
Adding a custom metric to AutoGluon
Feature Engineering
FAQ
Multimodal Prediction
Text Data
AutoMM for Text - Quick Start
AutoMM for Text - Multilingual Problems
Named Entity Recognition with AutoMM - Quick Start
AutoMM for Chinese Named Entity Recognition
Image Data – Classification / Regression
AutoMM for Image Classification - Quick Start
CLIP in AutoMM - Zero-Shot Image Classification
Image Data – Object Detection
Quick Start
AutoMM Detection - Quick Start on a Tiny COCO Format Dataset
Data Preparation
AutoMM Detection - Prepare COCO2017 Dataset
AutoMM Detection - Prepare Pascal VOC Dataset
AutoMM Detection - Prepare Watercolor Dataset
Convert Data to COCO Format
AutoMM Detection - Convert VOC Format Dataset to COCO Format
Finetune
AutoMM Detection - Fast Finetune on COCO Format Dataset
AutoMM Detection - High Performance Finetune on COCO Format Dataset
Evaluation
AutoMM Detection - Evaluate Pretrained YOLOv3 on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Faster R-CNN on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Deformable DETR on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Faster R-CNN on VOC Format Dataset
Document Data
Categorizing Scanned Documents with AutoMM
Matching
Text Semantic Search with AutoMM
Text-to-Text Semantic Matching with AutoMM
Image-Text Semantic Matching with AutoMM - Zero-Shot
Image-Text Semantic Matching with AutoMM
Image-to-Image Semantic Matching with AutoMM
Multimodal Data
AutoMM for Image + Text + Tabular - Quick Start
AutoMM for Text + Tabular - Quick Start
AutoMM for Multimodal Named Entity Extraction
Advanced Topics
Single GPU Billion-scale Model Training via Parameter-Efficient Finetuning
Hyperparameter Optimization in AutoMM
Knowledge Distillation in AutoMM
Customize AutoMM
Few Shot Learning with
FewShotSVMPredictor
AutoMM Presets
How to use FocalLoss
FAQ
Time Series Forecasting
Forecasting Time Series - Quick Start
Forecasting Time Series - In Depth
Forecasting Time Series - Model Zoo
FAQ - Time Series
Cloud Training and Deployment
New managed AutoGluon-Tabular experience on Amazon SageMaker Autopilot
AutoGluon Cloud
Cloud Training with AWS SageMaker
Deploying AutoGluon Models with AWS SageMaker
Deploying AutoGluon models with serverless templates
Exploratory Data Analysis Tools
Automated Dataset Overview
Automated Target Variable Analysis
Automated Quick Model Fit
Covariate Shift Analysis
Feature Interaction Charting
Reference: Base APIs
Reference: Auto components
Components: dataset
Components: interaction
Components: missing
Components: model
Components: shift
Components: transform
Cheat Sheet
AutoGluon Predictors
autogluon.features
autogluon.tabular.models
Index
A
|
B
|
C
|
D
|
E
|
F
|
G
|
H
|
I
|
J
|
K
|
L
|
M
|
N
|
O
|
P
|
Q
|
R
|
S
|
T
|
U
|
V
|
W
|
X
A
AbstractAnalysis (class in autogluon.eda.analysis.base)
AbstractFeatureGenerator (class in autogluon.features.generators)
AbstractModel (class in autogluon.tabular.models)
AbstractVisualization (class in autogluon.eda.visualization.base)
add_special_types() (autogluon.common.features.feature_metadata.FeatureMetadata method)
all_keys_must_be_present() (autogluon.eda.analysis.base.AbstractAnalysis method)
(autogluon.eda.visualization.base.AbstractVisualization method)
analyze() (in module autogluon.eda.auto.simple)
analyze_interaction() (in module autogluon.eda.auto.simple)
ApplyFeatureGenerator (class in autogluon.eda.analysis.transform)
ARIMAModel (class in autogluon.timeseries.models)
AsTypeFeatureGenerator (class in autogluon.features.generators)
at_least_one_key_must_be_present() (autogluon.eda.analysis.base.AbstractAnalysis method)
(autogluon.eda.visualization.base.AbstractVisualization method)
AutoARIMAModel (class in autogluon.timeseries.models)
AutoETSModel (class in autogluon.timeseries.models)
autogluon.common.features.feature_metadata
module
autogluon.core.models
module
autogluon.eda.analysis.base
module
autogluon.eda.analysis.dataset
module
autogluon.eda.analysis.interaction
module
autogluon.eda.analysis.missing
module
autogluon.eda.analysis.model
module
autogluon.eda.analysis.shift
module
autogluon.eda.analysis.transform
module
autogluon.eda.auto.simple
module
autogluon.eda.visualization.base
module
autogluon.eda.visualization.dataset
module
autogluon.eda.visualization.interaction
module
autogluon.eda.visualization.missing
module
autogluon.eda.visualization.model
module
autogluon.eda.visualization.shift
module
autogluon.features.generators
module
autogluon.multimodal
module
,
[1]
autogluon.tabular
module
,
[1]
,
[2]
autogluon.tabular.models
module
,
[1]
autogluon.timeseries
module
,
[1]
,
[2]
autogluon.timeseries.models
module
AutoGluonModelEvaluator (class in autogluon.eda.analysis.model)
AutoGluonModelQuickFit (class in autogluon.eda.analysis.model)
AutoGluonTabularModel (class in autogluon.timeseries.models)
AutoMLPipelineFeatureGenerator (class in autogluon.features.generators)
available_datasets() (autogluon.eda.analysis.base.AbstractAnalysis static method)
B
BaggedEnsembleModel (class in autogluon.core.models)
BinnedFeatureGenerator (class in autogluon.features.generators)
BulkFeatureGenerator (class in autogluon.features.generators)
C
can_compile() (autogluon.tabular.models.AbstractModel method)
can_fit() (autogluon.tabular.models.AbstractModel method)
can_handle() (autogluon.eda.analysis.base.AbstractAnalysis method)
(autogluon.eda.visualization.base.AbstractVisualization method)
can_infer() (autogluon.tabular.models.AbstractModel method)
CatBoostModel (class in autogluon.tabular.models)
CategoryFeatureGenerator (class in autogluon.features.generators)
CategoryMemoryMinimizeFeatureGenerator (class in autogluon.features.generators)
class_labels() (autogluon.multimodal.MultiModalPredictor property)
clone() (autogluon.tabular.TabularPredictor method)
clone_for_deployment() (autogluon.tabular.TabularPredictor method)
compile() (autogluon.tabular.models.AbstractModel method)
compile_models() (autogluon.tabular.TabularPredictor method)
ConfusionMatrix (class in autogluon.eda.visualization.model)
convert_to_refit_full_template() (autogluon.tabular.models.AbstractModel method)
convert_to_refit_full_via_copy() (autogluon.tabular.models.AbstractModel method)
convert_to_template() (autogluon.tabular.models.AbstractModel method)
Correlation (class in autogluon.eda.analysis.interaction)
CorrelationSignificance (class in autogluon.eda.analysis.interaction)
CorrelationSignificanceVisualization (class in autogluon.eda.visualization.interaction)
CorrelationVisualization (class in autogluon.eda.visualization.interaction)
covariate_shift_detection() (in module autogluon.eda.auto.simple)
D
Dataset (autogluon.tabular.TabularPredictor attribute)
dataset_overview() (in module autogluon.eda.auto.simple)
DatasetStatistics (class in autogluon.eda.visualization.dataset)
DatasetSummary (class in autogluon.eda.analysis.dataset)
DatasetTypeMismatch (class in autogluon.eda.visualization.dataset)
DatetimeFeatureGenerator (class in autogluon.features.generators)
DeepARModel (class in autogluon.timeseries.models)
delete_from_disk() (autogluon.tabular.models.AbstractModel method)
delete_models() (autogluon.tabular.TabularPredictor method)
distill() (autogluon.tabular.TabularPredictor method)
DistributionFit (class in autogluon.eda.analysis.interaction)
DropDuplicatesFeatureGenerator (class in autogluon.features.generators)
DropUniqueFeatureGenerator (class in autogluon.features.generators)
DummyFeatureGenerator (class in autogluon.features.generators)
dump_model() (autogluon.multimodal.MultiModalPredictor method)
DynamicOptimizedThetaModel (class in autogluon.timeseries.models)
E
estimate_memory_usage() (autogluon.tabular.models.AbstractModel method)
ETSModel (class in autogluon.timeseries.models)
evaluate() (autogluon.multimodal.MultiModalPredictor method)
(autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
evaluate_predictions() (autogluon.tabular.TabularPredictor method)
explain_classification_errors() (autogluon.tabular.TabularPredictor method)
export_onnx() (autogluon.multimodal.MultiModalPredictor method)
extract_embedding() (autogluon.multimodal.MultiModalPredictor method)
F
FastTextModel (class in autogluon.tabular.models)
feature_importance() (autogluon.tabular.TabularPredictor method)
FeatureImportance (class in autogluon.eda.visualization.model)
FeatureInteraction (class in autogluon.eda.analysis.interaction)
FeatureInteractionVisualization (class in autogluon.eda.visualization.interaction)
FeatureMetadata (class in autogluon.common.features.feature_metadata)
features() (autogluon.tabular.TabularPredictor method)
fill_missing_values() (autogluon.timeseries.TimeSeriesDataFrame method)
FillNaFeatureGenerator (class in autogluon.features.generators)
fit() (autogluon.eda.analysis.base.AbstractAnalysis method)
(autogluon.features.generators.AbstractFeatureGenerator method)
(autogluon.multimodal.MultiModalPredictor method)
(autogluon.tabular.models.AbstractModel method)
(autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
fit_extra() (autogluon.tabular.TabularPredictor method)
fit_pseudolabel() (autogluon.tabular.TabularPredictor method)
fit_summary() (autogluon.multimodal.MultiModalPredictor method)
(autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
fit_transform() (autogluon.features.generators.AbstractFeatureGenerator method)
fit_weighted_ensemble() (autogluon.tabular.TabularPredictor method)
from_data_frame() (autogluon.timeseries.TimeSeriesDataFrame class method)
from_df() (autogluon.common.features.feature_metadata.FeatureMetadata class method)
from_iterable_dataset() (autogluon.timeseries.TimeSeriesDataFrame class method)
from_pickle() (autogluon.timeseries.TimeSeriesDataFrame class method)
G
get_feature_links() (autogluon.features.generators.AbstractFeatureGenerator method)
get_feature_links_chain() (autogluon.features.generators.AbstractFeatureGenerator method)
get_features() (autogluon.common.features.feature_metadata.FeatureMetadata method)
get_fit_metadata() (autogluon.tabular.models.AbstractModel method)
get_info() (autogluon.tabular.models.AbstractModel method)
get_minimum_resources() (autogluon.tabular.models.AbstractModel method)
get_model_best() (autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
get_model_full_dict() (autogluon.tabular.TabularPredictor method)
get_model_names() (autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
get_model_names_persisted() (autogluon.tabular.TabularPredictor method)
get_oof_pred() (autogluon.tabular.TabularPredictor method)
get_oof_pred_proba() (autogluon.tabular.TabularPredictor method)
get_params() (autogluon.tabular.models.AbstractModel method)
get_predictor_classes() (autogluon.multimodal.MultiModalPredictor method)
get_processed_batch_for_deployment() (autogluon.multimodal.MultiModalPredictor method)
get_size_disk() (autogluon.tabular.TabularPredictor method)
get_size_disk_per_file() (autogluon.tabular.TabularPredictor method)
get_tags() (autogluon.features.generators.AbstractFeatureGenerator method)
get_trained_params() (autogluon.tabular.models.AbstractModel method)
H
hyperparameter_tune() (autogluon.tabular.models.AbstractModel method)
I
IdentityFeatureGenerator (class in autogluon.features.generators)
ImagePredictorModel (class in autogluon.tabular.models)
info() (autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
interpretable_models_summary() (autogluon.tabular.TabularPredictor method)
is_fit() (autogluon.tabular.models.AbstractModel method)
is_initialized() (autogluon.tabular.models.AbstractModel method)
is_valid() (autogluon.tabular.models.AbstractModel method)
is_valid_metadata_in() (autogluon.features.generators.AbstractFeatureGenerator method)
J
join_metadata() (autogluon.common.features.feature_metadata.FeatureMetadata method)
K
keep_features() (autogluon.common.features.feature_metadata.FeatureMetadata method)
KNNModel (class in autogluon.tabular.models)
L
LabelEncoderFeatureGenerator (class in autogluon.features.generators)
LabelInsightsAnalysis (class in autogluon.eda.analysis.dataset)
LabelInsightsVisualization (class in autogluon.eda.visualization.dataset)
leaderboard() (autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
LGBModel (class in autogluon.tabular.models)
LinearModel (class in autogluon.tabular.models)
list_supported_models() (autogluon.multimodal.MultiModalPredictor method)
load() (autogluon.multimodal.MultiModalPredictor class method)
(autogluon.tabular.models.AbstractModel class method)
(autogluon.tabular.TabularPredictor class method)
(autogluon.timeseries.TimeSeriesPredictor class method)
load_data_internal() (autogluon.tabular.TabularPredictor method)
M
missing_values_analysis() (in module autogluon.eda.auto.simple)
MissingValues (class in autogluon.eda.visualization.missing)
MissingValuesAnalysis (class in autogluon.eda.analysis.missing)
ModelLeaderboard (class in autogluon.eda.visualization.model)
module
autogluon.common.features.feature_metadata
autogluon.core.models
autogluon.eda.analysis.base
autogluon.eda.analysis.dataset
autogluon.eda.analysis.interaction
autogluon.eda.analysis.missing
autogluon.eda.analysis.model
autogluon.eda.analysis.shift
autogluon.eda.analysis.transform
autogluon.eda.auto.simple
autogluon.eda.visualization.base
autogluon.eda.visualization.dataset
autogluon.eda.visualization.interaction
autogluon.eda.visualization.missing
autogluon.eda.visualization.model
autogluon.eda.visualization.shift
autogluon.features.generators
autogluon.multimodal
,
[1]
autogluon.tabular
,
[1]
,
[2]
autogluon.tabular.models
,
[1]
autogluon.timeseries
,
[1]
,
[2]
autogluon.timeseries.models
MultiModalPredictor (class in autogluon.multimodal)
N
NaiveModel (class in autogluon.timeseries.models)
Namespace (class in autogluon.eda.analysis.base)
NNFastAiTabularModel (class in autogluon.tabular.models)
NumericMemoryMinimizeFeatureGenerator (class in autogluon.features.generators)
O
original_features() (autogluon.tabular.TabularPredictor property)
P
persist_models() (autogluon.tabular.TabularPredictor method)
PipelineFeatureGenerator (class in autogluon.features.generators)
plot_ensemble_model() (autogluon.tabular.TabularPredictor method)
positive_class() (autogluon.multimodal.MultiModalPredictor property)
(autogluon.tabular.TabularPredictor property)
predict() (autogluon.multimodal.MultiModalPredictor method)
(autogluon.tabular.models.AbstractModel method)
(autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
predict_multi() (autogluon.tabular.TabularPredictor method)
predict_proba() (autogluon.multimodal.MultiModalPredictor method)
(autogluon.tabular.models.AbstractModel method)
(autogluon.tabular.TabularPredictor method)
predict_proba_multi() (autogluon.tabular.TabularPredictor method)
preprocess() (autogluon.tabular.models.AbstractModel method)
print_feature_metadata_info() (autogluon.features.generators.AbstractFeatureGenerator method)
print_generator_info() (autogluon.features.generators.AbstractFeatureGenerator method)
print_interpretable_rules() (autogluon.tabular.TabularPredictor method)
ProblemTypeControl (class in autogluon.eda.analysis.dataset)
Q
quick_fit() (in module autogluon.eda.auto.simple)
R
RawTypesAnalysis (class in autogluon.eda.analysis.dataset)
reduce_memory_size() (autogluon.tabular.models.AbstractModel method)
refit_full() (autogluon.tabular.TabularPredictor method)
RegressionEvaluation (class in autogluon.eda.visualization.model)
remove_features() (autogluon.common.features.feature_metadata.FeatureMetadata method)
rename() (autogluon.tabular.models.AbstractModel method)
rename_features() (autogluon.common.features.feature_metadata.FeatureMetadata method)
RenameFeatureGenerator (class in autogluon.features.generators)
render() (autogluon.eda.visualization.base.AbstractVisualization method)
RFModel (class in autogluon.tabular.models)
S
Sampler (class in autogluon.eda.analysis.dataset)
save() (autogluon.multimodal.MultiModalPredictor method)
(autogluon.tabular.models.AbstractModel method)
(autogluon.tabular.TabularPredictor method)
(autogluon.timeseries.TimeSeriesPredictor method)
save_space() (autogluon.tabular.TabularPredictor method)
SeasonalNaiveModel (class in autogluon.timeseries.models)
set_model_best() (autogluon.tabular.TabularPredictor method)
set_verbosity() (autogluon.multimodal.MultiModalPredictor method)
SimpleFeedForwardModel (class in autogluon.timeseries.models)
slice_by_time() (autogluon.timeseries.TimeSeriesDataFrame method)
slice_by_timestep() (autogluon.timeseries.TimeSeriesDataFrame method)
SpecialTypesAnalysis (class in autogluon.eda.analysis.dataset)
split_by_time() (autogluon.timeseries.TimeSeriesDataFrame method)
StackerEnsembleModel (class in autogluon.core.models)
T
TabularDataset (class in autogluon.tabular)
TabularNeuralNetMxnetModel (class in autogluon.tabular.models)
TabularNeuralNetTorchModel (class in autogluon.tabular.models)
TabularPredictor (class in autogluon.tabular)
target_analysis() (in module autogluon.eda.auto.simple)
TemporalFusionTransformerModel (class in autogluon.timeseries.models)
TextNgramFeatureGenerator (class in autogluon.features.generators)
TextPredictorModel (class in autogluon.tabular.models)
TextSpecialFeatureGenerator (class in autogluon.features.generators)
ThetaModel (class in autogluon.timeseries.models)
TimeSeriesDataFrame (class in autogluon.timeseries)
TimeSeriesPredictor (class in autogluon.timeseries)
to_regular_index() (autogluon.timeseries.TimeSeriesDataFrame method)
TrainValidationSplit (class in autogluon.eda.analysis.dataset)
transform() (autogluon.features.generators.AbstractFeatureGenerator method)
transform_features() (autogluon.tabular.TabularPredictor method)
transform_labels() (autogluon.tabular.TabularPredictor method)
U
unpersist_models() (autogluon.tabular.TabularPredictor method)
V
validate_fit_resources() (autogluon.tabular.models.AbstractModel method)
VariableTypeAnalysis (class in autogluon.eda.analysis.dataset)
VowpalWabbitModel (class in autogluon.tabular.models)
W
WeightedEnsembleModel (class in autogluon.core.models)
X
XGBoostModel (class in autogluon.tabular.models)
XShiftDetector (class in autogluon.eda.analysis.shift)
XShiftSummary (class in autogluon.eda.visualization.shift)
XTModel (class in autogluon.tabular.models)