Reference: Auto components

This section is a reference for high-level composite components showcased in sections above.

autogluon.eda.analysis.auto

dataset_overview

Shortcut to perform high-level datasets summary overview (counts, frequencies, missing statistics, types info).

target_analysis

Target variable composite analysis.

quick_fit

This helper performs quick model fit analysis and then produces a composite report of the results.

missing_values_analysis

Perform quick analysis of missing values across datasets.

covariate_shift_detection

Shortcut for covariate shift detection analysis.

analyze_interaction

This helper performs simple feature interaction analysis.

analyze

This helper creates BaseAnalysis wrapping passed analyses into Sampler if needed, then fits and renders produced state with specified visualizations.

dataset_overview

autogluon.eda.auto.simple.dataset_overview(train_data: Optional[pandas.core.frame.DataFrame] = None, test_data: Optional[pandas.core.frame.DataFrame] = None, val_data: Optional[pandas.core.frame.DataFrame] = None, label: Optional[str] = None, state: Union[None, dict, autogluon.eda.state.AnalysisState] = None, return_state: bool = False, sample: Union[None, int, float] = None, fig_args: Optional[Dict[str, Dict[str, Any]]] = None, chart_args: Optional[Dict[str, Dict[str, Any]]] = None)[source]

Shortcut to perform high-level datasets summary overview (counts, frequencies, missing statistics, types info).

Supported fig_args/chart_args keys:
  • feature_distance - feature distance dendrogram chart

Parameters
train_data: Optional[DataFrame], default = None

training dataset

test_data: Optional[DataFrame], default = None

test dataset

val_data: Optional[DataFrame], default = None

validation dataset

label:Optional[str], default = None

target variable

state: Union[None, dict, AnalysisState], default = None

pass prior state if necessary; the object will be updated during anlz_facets fit call.

return_state: bool, default = False

return state if True

sample: Union[None, int, float], default = None

sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

fig_args: Optional[Dict[str, Any]], default = None,

figures args for vizualizations; key == component; value = dict of kwargs for component figure

chart_args: Optional[Dict[str, Any]], default = None,

figures args for vizualizations; key == component; value = dict of kwargs for component chart

Examples

>>> import autogluon.eda.analysis as eda
>>>
>>> auto.dataset_overview(
>>>     train_data=df_train, test_data=df_test, label=target_col,
>>>     chart_args={'feature_distance': dict(orientation='left')},
>>>     fig_args={'feature_distance': dict(figsize=(6,6))},
>>> )

target_analysis

autogluon.eda.auto.simple.target_analysis(train_data: pandas.core.frame.DataFrame, label: str, test_data: Optional[pandas.core.frame.DataFrame] = None, problem_type: str = 'auto', fit_distributions: Union[bool, str, List[str]] = True, sample: Union[None, int, float] = None, state: Union[None, dict, autogluon.eda.state.AnalysisState] = None, return_state: bool = False) → Optional[autogluon.eda.state.AnalysisState][source]

Target variable composite analysis.

Performs the following analysis components of the label field:
  • basic summary stats

  • feature values distribution charts; adds fitted distributions for numeric targets

  • target correlations analysis; with interaction charts of target vs high-correlated features

Parameters
train_data: Optional[DataFrame]

training dataset

test_data: Optional[DataFrame], default = None

test dataset

label:Optional[str]

target variable

problem_type: str, default = ‘auto’

problem type to use. Valid problem_type values include [‘auto’, ‘binary’, ‘multiclass’, ‘regression’, ‘quantile’, ‘softclass’] auto means it will be Auto-detected using AutoGluon methods.

fit_distributions: Union[bool, str, List[str]], default = False,

If True, or list of distributions is provided, then fit distributions. Performed only if y and hue are not present.

state: Union[None, dict, AnalysisState], default = None

pass prior state if necessary; the object will be updated during anlz_facets fit call.

sample: Union[None, int, float], default = None

sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

return_state: bool, default = False

return state if True

Returns
state after fit call if return_state is True; None otherwise

Examples

>>> import autogluon.eda.analysis as eda
>>>
>>> auto.target_analysis(train_data=..., label=...)

quick_fit

autogluon.eda.auto.simple.quick_fit(train_data: pandas.core.frame.DataFrame, label: str, path: Optional[str] = None, val_size: float = 0.3, problem_type: str = 'auto', sample: Union[None, int, float] = None, state: Union[None, dict, autogluon.eda.state.AnalysisState] = None, return_state: bool = False, verbosity: int = 0, show_feature_importance_barplots: bool = False, fig_args: Optional[Dict[str, Dict[str, Any]]] = None, chart_args: Optional[Dict[str, Dict[str, Any]]] = None, **fit_args)[source]

This helper performs quick model fit analysis and then produces a composite report of the results.

The analysis is structured in a sequence of operations:
  • Sample if sample is specified.

  • Perform train-test split using val_size ratio

  • Fit AutoGluon estimator given fit_args; if hyperparameters not present in args, then use default ones

    (Random Forest by default - because it is interpretable)

  • Display report

The reports include:
  • confusion matrix for classification problems; predictions vs actual for regression problems

  • model leaderboard

  • feature importance

  • samples with the highest prediction error - candidates for inspection

  • samples with the least distance from the other class - candidates for labeling

Supported fig_args/chart_args keys:
  • confusion_matrix - confusion matrix chart for classification predictor

  • regression_eval - regression predictor results chart

  • feature_importance - feature importance barplot chart

Parameters
train_data: DataFrame

training dataset

label: str

target variable

path: Optional[str], default = None,

path for models saving

problem_type: str, default = ‘auto’

problem type to use. Valid problem_type values include [‘auto’, ‘binary’, ‘multiclass’, ‘regression’, ‘quantile’, ‘softclass’] auto means it will be Auto-detected using AutoGluon methods.

sample: Union[None, int, float], default = None

sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

val_size: float, default = 0.3

fraction of training set to be assigned as validation set during the split.

state: Union[None, dict, AnalysisState], default = None

pass prior state if necessary; the object will be updated during anlz_facets fit call.

return_state: bool, default = False

return state if True

verbosity: int, default = 0

Verbosity levels range from 0 to 4 and control how much information is printed. Higher levels correspond to more detailed print statements (you can set verbosity = 0 to suppress warnings). If using logging, you can alternatively control amount of information printed via logger.setLevel(L), where L ranges from 0 to 50 (Note: higher values of L correspond to fewer print statements, opposite of verbosity levels).

show_feature_importance_barplots: bool, default = False

if True, then barplot char will ba added with feature importance visualization

fit_args

kwargs to pass into TabularPredictor fit

fig_args: Optional[Dict[str, Any]], default = None,

figures args for vizualizations; key == component; value = dict of kwargs for component figure

chart_args: Optional[Dict[str, Any]], default = None,

figures args for vizualizations; key == component; value = dict of kwargs for component chart

Returns
state after fit call if return_state is True; None otherwise

Examples

>>> import autogluon.eda.analysis as eda
>>>
>>> # Quick fit
>>> state = auto.quick_fit(
>>>     train_data=..., label=...,
>>>     return_state=True,  # return state object from call
>>>     save_model_to_state=True,  # store fitted model into the state
>>>     hyperparameters={'GBM': {}}  # train specific model
>>> )
>>>
>>> # Using quick fit model
>>> model = state.model
>>> y_pred = model.predict(test_data)

missing_values_analysis

autogluon.eda.auto.simple.missing_values_analysis(graph_type: str = 'matrix', train_data: Optional[pandas.core.frame.DataFrame] = None, test_data: Optional[pandas.core.frame.DataFrame] = None, val_data: Optional[pandas.core.frame.DataFrame] = None, state: Union[None, dict, autogluon.eda.state.AnalysisState] = None, return_state: bool = False, sample: Union[None, int, float] = None, **chart_args)[source]

Perform quick analysis of missing values across datasets.

Parameters
graph_type: str, default = ‘matrix’

One of the following visualization types: - matrix - nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion

This visualization will comfortably accommodate up to 50 labelled variables. Past that range labels begin to overlap or become unreadable, and by default large displays omit them.

  • bar - visualizes how many rows are non-null vs null in the column. Logarithmic scale can by specifying log=True in kwargs

  • heatmap - correlation heatmap measures nullity correlation: how strongly the presence or absence of one

    variable affects the presence of another. Nullity correlation ranges from -1 (if one variable appears the other definitely does not) to 0 (variables appearing or not appearing have no effect on one another) to 1 (if one variable appears the other definitely also does). Entries marked <1 or >-1 have a correlation that is close to being exactingly negative or positive but is still not quite perfectly so.

  • dendrogram - the dendrogram allows to more fully correlate variable completion, revealing trends deeper than the pairwise ones

    visible in the correlation heatmap. The dendrogram uses a hierarchical clustering algorithm (courtesy of scipy) to bin variables against one another by their nullity correlation (measured in terms of binary distance). At each step of the tree the variables are split up based on which combination minimizes the distance of the remaining clusters. The more monotone the set of variables, the closer their total distance is to zero, and the closer their average distance (the y-axis) is to zero.

train_data: Optional[DataFrame]

training dataset

test_data: Optional[DataFrame], default = None

test dataset

val_data

validation dataset

state: Union[None, dict, AnalysisState], default = None

pass prior state if necessary; the object will be updated during anlz_facets fit call.

return_state: bool, default = False

return state if True

sample: Union[None, int, float], default = None

sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

Returns
state after fit call if return_state is True; None otherwise

Examples

>>> import autogluon.eda.auto as auto
>>>
>>> auto.missing_values_analysis(train_data=...)

covariate_shift_detection

autogluon.eda.auto.simple.covariate_shift_detection(train_data: pandas.core.frame.DataFrame, test_data: pandas.core.frame.DataFrame, label: str, sample: Union[None, int, float] = None, path: Optional[str] = None, state: Union[None, dict, autogluon.eda.state.AnalysisState] = None, return_state: bool = False, verbosity: int = 0, **fit_args)[source]

Shortcut for covariate shift detection analysis.

Detects a change in covariate (X) distribution between training and test, which we call XShift. It can tell you if your training set is not representative of your test set distribution. This is done with a Classifier 2 Sample Test.

Parameters
train_data: Optional[DataFrame]

training dataset

test_data: Optional[DataFrame]

test dataset

label:Optional[str]

target variable

state: Union[None, dict, AnalysisState], default = None

pass prior state if necessary; the object will be updated during anlz_facets fit call.

sample: Union[None, int, float], default = None

sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

path: Optional[str], default = None,

path for models saving

return_state: bool, default = False

return state if True

verbosity: int, default = 0

Verbosity levels range from 0 to 4 and control how much information is printed. Higher levels correspond to more detailed print statements (you can set verbosity = 0 to suppress warnings). If using logging, you can alternatively control amount of information printed via logger.setLevel(L), where L ranges from 0 to 50 (Note: higher values of L correspond to fewer print statements, opposite of verbosity levels).

fit_args

kwargs to pass into TabularPredictor fit

Returns
state after fit call if return_state is True; None otherwise

Examples

>>> import autogluon.eda.auto as auto
>>>
>>> # use default settings
>>> auto.covariate_shift_detection(train_data=..., test_data=..., label=...)
>>>
>>> # customize classifier and verbosity level
>>> auto.covariate_shift_detection(train_data=..., test_data=..., label=..., verbosity=2, hyperparameters = {'GBM': {}})

analyze_interaction

autogluon.eda.auto.simple.analyze_interaction(x: Optional[str] = None, y: Optional[str] = None, hue: Optional[str] = None, fit_distributions: Union[bool, str, List[str]] = False, fig_args: Optional[Dict[str, Any]] = None, chart_args: Optional[Dict[str, Any]] = None, **analysis_args)[source]

This helper performs simple feature interaction analysis.

Parameters
x: Optional[str], default = None
y: Optional[str], default = None
hue: Optional[str], default = None
fit_distributions: Union[bool, str, List[str]], default = False,

If True, or list of distributions is provided, then fit distributions. Performed only if y and hue are not present.

chart_args: Optional[dict], default = None

kwargs to pass into visualization component

fig_args: Optional[Dict[str, Any]], default = None,

kwargs to pass into chart figure

Examples

>>> import pandas as pd
>>> import autogluon.eda.auto as auto
>>>
>>> df_train = pd.DataFrame(...)
>>>
>>> auto.analyze_interaction(x='Age', hue='Survived', train_data=df_train, chart_args=dict(headers=True, alpha=0.2))

analyze

autogluon.eda.auto.simple.analyze(train_data=None, test_data=None, val_data=None, model=None, label: Optional[str] = None, state: Union[None, dict, autogluon.eda.state.AnalysisState] = None, sample: Union[None, int, float] = None, anlz_facets: Optional[List[autogluon.eda.analysis.base.AbstractAnalysis]] = None, viz_facets: Optional[List[autogluon.eda.visualization.base.AbstractVisualization]] = None, return_state: bool = False, verbosity: int = 2) → Optional[autogluon.eda.state.AnalysisState][source]

This helper creates BaseAnalysis wrapping passed analyses into Sampler if needed, then fits and renders produced state with specified visualizations.

Parameters
train_data

training dataset

test_data

test dataset

val_data

validation dataset

model

trained Predictor

label: str

target variable

state: Union[None, dict, AnalysisState], default = None

pass prior state if necessary; the object will be updated during anlz_facets fit call.

sample: Union[None, int, float], default = None

sample size; if int, then row number is used; float must be between 0.0 and 1.0 and represents fraction of dataset to sample; None means no sampling See also autogluon.eda.analysis.dataset.Sampler()

anlz_facets: List[AbstractAnalysis]

analyses to add to this composite analysis

viz_facets: List[AbstractVisualization]

visualizations to add to this composite analysis

return_state: bool, default = False

return state if True

verbosity: int, default = 2,

Verbosity levels range from 0 to 4 and control how much information is printed. Higher levels correspond to more detailed print statements (you can set verbosity = 0 to suppress warnings). If using logging, you can alternatively control amount of information printed via logger.setLevel(L), where L ranges from 0 to 50 (Note: higher values of L correspond to fewer print statements, opposite of verbosity levels).

Returns
state after fit call if return_state is True; None otherwise