Adding a custom model to AutoGluon (Advanced)¶
Tip: If you are new to AutoGluon, review Predicting Columns in a Table - Quick Start to learn the basics of the AutoGluon API.
In this tutorial we will cover advanced custom model options that go beyond the topics covered in Adding a custom model to AutoGluon.
It is assumed that you have fully read through Adding a custom model to AutoGluon prior to this tutorial.
Loading the data¶
First we will load the data. For this tutorial we will use the adult income dataset because it has a mix of integer, float, and categorical features.
from autogluon.tabular import TabularDataset
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') # can be local CSV file as well, returns Pandas DataFrame
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') # another Pandas DataFrame
label = 'class' # specifies which column do we want to predict
train_data = train_data.sample(n=1000, random_state=0) # subsample for faster demo
train_data.head(5)
age | workclass | fnlwgt | education | education-num | marital-status | occupation | relationship | race | sex | capital-gain | capital-loss | hours-per-week | native-country | class | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6118 | 51 | Private | 39264 | Some-college | 10 | Married-civ-spouse | Exec-managerial | Wife | White | Female | 0 | 0 | 40 | United-States | >50K |
23204 | 58 | Private | 51662 | 10th | 6 | Married-civ-spouse | Other-service | Wife | White | Female | 0 | 0 | 8 | United-States | <=50K |
29590 | 40 | Private | 326310 | Some-college | 10 | Married-civ-spouse | Craft-repair | Husband | White | Male | 0 | 0 | 44 | United-States | <=50K |
18116 | 37 | Private | 222450 | HS-grad | 9 | Never-married | Sales | Not-in-family | White | Male | 0 | 2339 | 40 | El-Salvador | <=50K |
33964 | 62 | Private | 109190 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 15024 | 0 | 40 | United-States | >50K |
Force features to be passed to models without preprocessing / dropping¶
Reasons why you would want to do this is if you have model logic that requires a particular column to always be present, regardless of its content. For example, if you are fine-tuning a pre-trained language model that expects a feature indicating the language of the text in a given row which dictates how the text is preprocessed, but training data only includes one language, without this adjustment the language identifier feature would be dropped prior to fitting the model.
Force features to not be dropped in model-specific preprocessing¶
To avoid dropping features in custom models due to having only 1 unique
value, add the following _get_default_auxiliary_params
method to
your custom model class:
from autogluon.core.models import AbstractModel
class DummyModel(AbstractModel):
def _fit(self, X, **kwargs):
print(f'Before {self.__class__.__name__} Preprocessing ({len(X.columns)} features):\n\t{list(X.columns)}')
X = self.preprocess(X)
print(f'After {self.__class__.__name__} Preprocessing ({len(X.columns)} features):\n\t{list(X.columns)}')
print(X.head(5))
class DummyModelKeepUnique(DummyModel):
def _get_default_auxiliary_params(self) -> dict:
default_auxiliary_params = super()._get_default_auxiliary_params()
extra_auxiliary_params = dict(
drop_unique=False, # Whether to drop features that have only 1 unique value, default is True
)
default_auxiliary_params.update(extra_auxiliary_params)
return default_auxiliary_params
Force features to not be dropped in global preprocessing¶
While the above fix for model-specific preprocessing works if the feature is still present after global preprocessing, it won’t help if the feature was already dropped before getting to the model. For this, we need to create a new feature generator class which separates the preprocessing logic between normal features and user override features.
Here is an example implementation:
# WARNING: To use this in practice, you must put this code in a separate python file
# from the main process and import it or else it will not be serializable.)
from autogluon.features import BulkFeatureGenerator, AutoMLPipelineFeatureGenerator, IdentityFeatureGenerator
class CustomFeatureGeneratorWithUserOverride(BulkFeatureGenerator):
def __init__(self, automl_generator_kwargs: dict = None, **kwargs):
generators = self._get_default_generators(automl_generator_kwargs=automl_generator_kwargs)
super().__init__(generators=generators, **kwargs)
def _get_default_generators(self, automl_generator_kwargs: dict = None):
if automl_generator_kwargs is None:
automl_generator_kwargs = dict()
generators = [
[
# Preprocessing logic that handles normal features
AutoMLPipelineFeatureGenerator(banned_feature_special_types=['user_override'], **automl_generator_kwargs),
# Preprocessing logic that handles special features user wishes to treat separately, here we simply skip preprocessing for these features.
IdentityFeatureGenerator(infer_features_in_args=dict(required_special_types=['user_override'])),
],
]
return generators
The above code splits the preprocessing logic of a feature depending on
if it is tagged with the 'user_override'
special type in feature
metadata. To tag three features
['age', 'native-country', 'dummy_feature']
in this way, you can do
the following:
# add a useless dummy feature to show that it is not dropped in preprocessing
train_data['dummy_feature'] = 'dummy value'
test_data['dummy_feature'] = 'dummy value'
from autogluon.tabular import FeatureMetadata
feature_metadata = FeatureMetadata.from_df(train_data)
print('Before inserting overrides:')
print(feature_metadata)
feature_metadata = feature_metadata.add_special_types(
{
'age': ['user_override'],
'native-country': ['user_override'],
'dummy_feature': ['user_override'],
}
)
print('After inserting overrides:')
print(feature_metadata)
Before inserting overrides:
('int', []) : 6 | ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', ...]
('object', []) : 10 | ['workclass', 'education', 'marital-status', 'occupation', 'relationship', ...]
After inserting overrides:
('int', []) : 5 | ['fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']
('int', ['user_override']) : 1 | ['age']
('object', []) : 8 | ['workclass', 'education', 'marital-status', 'occupation', 'relationship', ...]
('object', ['user_override']) : 2 | ['native-country', 'dummy_feature']
Note that this is only one example implementation of a custom feature
generator that has bifurcated preprocessing logic. Users can make their
tagging and feature generator logic arbitrarily complex to fit their
needs. In this example, we perform the standard preprocessing on
non-tagged features, and for tagged features we pass them through
IdentityFeatureGenerator
which is a no-op logic that does not alter
the features in any way. Instead of an IdentityFeatureGenerator
, you
could use any kind of feature generator to suite your needs.
Putting it all together¶
# Separate features and labels
X = train_data.drop(columns=[label])
y = train_data[label]
X_test = test_data.drop(columns=[label])
y_test = test_data[label]
# preprocess the label column, as done in the prior custom model tutorial
from autogluon.core.data import LabelCleaner
from autogluon.core.utils import infer_problem_type
# Construct a LabelCleaner to neatly convert labels to float/integers during model training/inference, can also use to inverse_transform back to original.
problem_type = infer_problem_type(y=y) # Infer problem type (or else specify directly)
label_cleaner = LabelCleaner.construct(problem_type=problem_type, y=y)
y_preprocessed = label_cleaner.transform(y)
y_test_preprocessed = label_cleaner.transform(y_test)
# Make sure to specify your custom feature metadata to the feature generator
my_custom_feature_generator = CustomFeatureGeneratorWithUserOverride(feature_metadata_in=feature_metadata)
X_preprocessed = my_custom_feature_generator.fit_transform(X)
X_test_preprocessed = my_custom_feature_generator.transform(X_test)
Notice how the user_override features were not preprocessed:
print(list(X_preprocessed.columns))
X_preprocessed.head(5)
['fnlwgt', 'education-num', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'age', 'native-country', 'dummy_feature']
fnlwgt | education-num | sex | capital-gain | capital-loss | hours-per-week | workclass | education | marital-status | occupation | relationship | race | age | native-country | dummy_feature | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6118 | 39264 | 10 | 0 | 0 | 0 | 40 | 3 | 14 | 1 | 4 | 5 | 4 | 51 | United-States | dummy value |
23204 | 51662 | 6 | 0 | 0 | 0 | 8 | 3 | 0 | 1 | 8 | 5 | 4 | 58 | United-States | dummy value |
29590 | 326310 | 10 | 1 | 0 | 0 | 44 | 3 | 14 | 1 | 3 | 0 | 4 | 40 | United-States | dummy value |
18116 | 222450 | 9 | 1 | 0 | 2339 | 40 | 3 | 11 | 3 | 12 | 1 | 4 | 37 | El-Salvador | dummy value |
33964 | 109190 | 13 | 1 | 15024 | 0 | 40 | 3 | 9 | 1 | 4 | 0 | 4 | 62 | United-States | dummy value |
Now lets see what happens when we send this data to fit a dummy model:
dummy_model = DummyModel()
dummy_model.fit(X=X, y=y, feature_metadata=my_custom_feature_generator.feature_metadata)
Before DummyModel Preprocessing (15 features): ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'dummy_feature'] After DummyModel Preprocessing (14 features): ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country'] age workclass fnlwgt education education-num 6118 51 Private 39264 Some-college 10 23204 58 Private 51662 10th 6 29590 40 Private 326310 Some-college 10 18116 37 Private 222450 HS-grad 9 33964 62 Private 109190 Bachelors 13 marital-status occupation relationship race sex 6118 Married-civ-spouse Exec-managerial Wife White Female 23204 Married-civ-spouse Other-service Wife White Female 29590 Married-civ-spouse Craft-repair Husband White Male 18116 Never-married Sales Not-in-family White Male 33964 Married-civ-spouse Exec-managerial Husband White Male capital-gain capital-loss hours-per-week native-country 6118 0 0 40 United-States 23204 0 0 8 United-States 29590 0 0 44 United-States 18116 0 2339 40 El-Salvador 33964 15024 0 40 United-States
<__main__.DummyModel at 0x7fb1300a88b0>
Notice how the model dropped dummy_feature
during the preprocess
call. Now lets see what happens if we use DummyModelKeepUnique
:
dummy_model_keep_unique = DummyModelKeepUnique()
dummy_model_keep_unique.fit(X=X, y=y, feature_metadata=my_custom_feature_generator.feature_metadata)
Before DummyModelKeepUnique Preprocessing (15 features): ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'dummy_feature'] After DummyModelKeepUnique Preprocessing (15 features): ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'dummy_feature'] age workclass fnlwgt education education-num 6118 51 Private 39264 Some-college 10 23204 58 Private 51662 10th 6 29590 40 Private 326310 Some-college 10 18116 37 Private 222450 HS-grad 9 33964 62 Private 109190 Bachelors 13 marital-status occupation relationship race sex 6118 Married-civ-spouse Exec-managerial Wife White Female 23204 Married-civ-spouse Other-service Wife White Female 29590 Married-civ-spouse Craft-repair Husband White Male 18116 Never-married Sales Not-in-family White Male 33964 Married-civ-spouse Exec-managerial Husband White Male capital-gain capital-loss hours-per-week native-country 6118 0 0 40 United-States 23204 0 0 8 United-States 29590 0 0 44 United-States 18116 0 2339 40 El-Salvador 33964 15024 0 40 United-States dummy_feature 6118 dummy value 23204 dummy value 29590 dummy value 18116 dummy value 33964 dummy value
<__main__.DummyModelKeepUnique at 0x7fb0d48ed640>
Now dummy_feature
is no longer dropped!
The above code logic can be re-used for testing your own complex model
implementations, simply replace DummyModelKeepUnique
with your
custom model and check that it keeps the features you want to use.
Keeping Features via TabularPredictor¶
Now let’s demonstrate how to do this via TabularPredictor in far fewer lines of code. Note that this code will raise an exception if ran in this tutorial because the custom model and feature generator must exist in other files for them to be serializable. Therefore, we will not run the code in the tutorial. (It will also raise an exception because DummyModel isn’t a real model)
from autogluon.tabular import TabularPredictor
feature_generator = CustomFeatureGeneratorWithUserOverride()
predictor = TabularPredictor(label=label)
predictor.fit(
train_data=train_data,
feature_metadata=feature_metadata, # feature metadata with your overrides
feature_generator=feature_generator, # your custom feature generator that handles the overrides
hyperparameters={
'GBM': {}, # Can fit your custom model alongside default models
DummyModel: {}, # Will drop dummy_feature
DummyModelKeepUnique: {}, # Will not drop dummy_feature
# DummyModel: {'ag_args_fit': {'drop_unique': False}}, # This is another way to get same result as using DummyModelKeepUnique
}
)