Source code for autogluon.tabular.models.image_prediction.image_predictor
import logging
import numpy as np
import pandas as pd
from autogluon.common.features.types import R_OBJECT, S_IMAGE_PATH
from autogluon.core.constants import BINARY, MULTICLASS, REGRESSION, QUANTILE, SOFTCLASS
from ..automm.automm_model import MultiModalPredictorModel
logger = logging.getLogger(__name__)
# TODO: Handle multiple image columns?
# TODO: Handle multiple images in a single image column?
# TODO: Consider fully replacing with MultiModalPredictorModel
# first check if the null handling in this class provides value
[docs]class ImagePredictorModel(MultiModalPredictorModel):
"""
MultimodalPredictor that only uses image features.
Currently only supports 1 image column, with 1 image per sample.
Additionally has special null image handling to improve performance in the presence of null images (aka image path of '')
Note: null handling has not been compared to the built-in null handling of MultimodalPredictor yet.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._dummy_pred_proba = None # Dummy value to predict if image is NaN
self._image_col_name = None
@property
def _has_predict_proba(self):
return self.problem_type in [BINARY, MULTICLASS, SOFTCLASS]
def _get_default_auxiliary_params(self) -> dict:
default_auxiliary_params = super()._get_default_auxiliary_params()
extra_auxiliary_params = dict(
get_features_kwargs=dict(
valid_raw_types=[R_OBJECT],
required_special_types=[S_IMAGE_PATH],
),
)
default_auxiliary_params.update(extra_auxiliary_params)
return default_auxiliary_params
@classmethod
def _get_default_ag_args(cls) -> dict:
default_ag_args = super()._get_default_ag_args()
extra_ag_args = {
'valid_stacker': False,
'problem_types': [BINARY, MULTICLASS, REGRESSION],
}
default_ag_args.update(extra_ag_args)
return default_ag_args
def preprocess_fit(self, X, y, X_val=None, y_val=None, **kwargs):
X, y, X_val, y_val = super().preprocess_fit(X=X, y=y, X_val=X_val, y_val=y_val, **kwargs)
X_features = list(X.columns)
if len(X_features) != 1:
raise AssertionError(f'ImagePredictorModel only supports one image feature, but {len(X_features)} were given: {X_features}')
self._image_col_name = X_features[0]
null_indices = X[self._image_col_name] == ''
# TODO: Consider some kind of weighting of the two options so there isn't a harsh cutoff at 50
# FIXME: What if all rows in a class are null? Will probably crash.
if null_indices.sum() > 50:
self._dummy_pred_proba = self._compute_dummy_pred_proba(y[null_indices]) # FIXME: Do this one for better results
else:
# Not enough null to get a confident estimate of null label average, instead use all data average
self._dummy_pred_proba = self._compute_dummy_pred_proba(y)
if null_indices.sum() > 0:
X = X[~null_indices]
y = y[~null_indices]
if X_val is not None:
null_indices_val = X_val[self._image_col_name] == ''
if null_indices_val.sum() > 0:
X_val = X_val[~null_indices_val]
y_val = y_val[~null_indices_val]
return X, y, X_val, y_val
def _predict_proba(self, X, **kwargs):
X = self.preprocess(X, **kwargs)
pred_method = self.model.predict_proba if self._has_predict_proba else self.model.predict
# TODO: Add option to crash if null is present for faster predict_proba
null_indices = X[self._image_col_name] == ''
if null_indices.sum() > 0:
if self.num_classes is None:
y_pred_proba = np.zeros(len(X))
else:
y_pred_proba = np.zeros((len(X), self.num_classes))
X = X.reset_index(drop=True)
null_indices = X[self._image_col_name] == ''
X = X[~null_indices]
null_indices_rows = list(null_indices[null_indices].index)
non_null_indices_rows = list(null_indices[~null_indices].index)
y_pred_proba[null_indices_rows] = self._dummy_pred_proba
y_pred_proba[non_null_indices_rows] = pred_method(X, as_pandas=False)
else:
y_pred_proba = pred_method(X, as_pandas=False)
return self._convert_proba_to_unified_form(y_pred_proba)
# TODO: Consider moving to AbstractModel or as a separate function
# TODO: Test softclass
def _compute_dummy_pred_proba(self, y):
num_classes = self.num_classes
if self.problem_type in [BINARY, MULTICLASS]:
dummies = pd.get_dummies(y)
dummy_columns = set(list(dummies.columns))
if len(dummies.columns) < num_classes:
for c in range(num_classes):
if c not in dummy_columns:
dummies[c] = 0
dummies = dummies[list(range(num_classes))]
pred_proba_mean = dummies.mean().values
elif self.problem_type in [REGRESSION, QUANTILE, SOFTCLASS]:
pred_proba_mean = y.mean()
else:
raise NotImplementedError(f'Computing dummy pred_proba is not implemented for {self.problem_type}.')
return pred_proba_mean