Source code for autogluon.features.generators.text_ngram

import copy
import logging
import traceback

import numpy as np
import pandas as pd
from pandas import DataFrame, Series
from sklearn.feature_selection import SelectKBest, f_classif, f_regression

from autogluon.common.features.types import S_IMAGE_BYTEARRAY, S_IMAGE_PATH, S_TEXT, S_TEXT_NGRAM
from autogluon.common.utils.lite import disable_if_lite_mode

from ..vectorizers import downscale_vectorizer, get_ngram_freq, vectorizer_auto_ml_default
from .abstract import AbstractFeatureGenerator

logger = logging.getLogger(__name__)


# TODO: Add argument to define the text preprocessing logic
# TODO: Add argument to output ngrams as a sparse matrix
# TODO: Add HashingVectorizer support
# TODO: Documentation
[docs] class TextNgramFeatureGenerator(AbstractFeatureGenerator): """ Generates ngram features from text features. Parameters ---------- vectorizer : :class:`sklearn.feature_extraction.text.CountVectorizer` or :class:`sklearn.feature_extraction.text.TfidfVectorizer`, default CountVectorizer(min_df=30, ngram_range=(1, 3), max_features=10000, dtype=np.uint8) # noqa sklearn CountVectorizer which is used to generate the ngrams given the text data. Can also specify a TfidfVectorizer, but note that memory usage will increase by 4-8x relative to CountVectorizer. vectorizer_strategy : str, default 'combined' If 'combined', all text features are concatenated together to fit the vectorizer. Features generated in this way have their names prepended with '__nlp__.'. If 'separate', all text features are fit separately with their own copy of the vectorizer. Their ngram features are then concatenated together to form the output. If 'both', the outputs of 'combined' and 'separate' are concatenated together to form the output. It is generally recommended to keep vectorizer_strategy as 'combined' unless the text features are not associated with each-other, as fitting separate vectorizers could increase memory usage and model training time. Valid values: ['combined', 'separate', 'both'] max_memory_ratio : float, default 0.15 Safety measure to avoid out-of-memory errors downstream in model training. The number of ngrams generated will be capped to take at most max_memory_ratio proportion of total available memory, treating the ngrams as float32 values. ngram features will be removed in least frequent to most frequent order. Note: For vectorizer_strategy values other than 'combined', the resulting ngrams may use more than this value. It is recommended to only increase this value above 0.15 if confident that higher values will not result in out-of-memory errors. **kwargs : Refer to :class:`AbstractFeatureGenerator` documentation for details on valid key word arguments. """ def __init__(self, vectorizer=None, vectorizer_strategy="combined", max_memory_ratio=0.15, prefilter_tokens=False, prefilter_token_count=100, **kwargs): super().__init__(**kwargs) self.vectorizers = [] # TODO: 0.20 causes OOM error with 64 GB ram on NN with several datasets. LightGBM and CatBoost succeed # TODO: Finetune this, or find a better way to ensure stability # TODO: adjust max_memory_ratio correspondingly if prefilter_tokens==True self.max_memory_ratio = max_memory_ratio # Ratio of maximum memory the output ngram features are allowed to use in dense int32 form. if vectorizer is None: self.vectorizer_default_raw = vectorizer_auto_ml_default() else: self.vectorizer_default_raw = vectorizer if vectorizer_strategy not in ["combined", "separate", "both"]: raise ValueError(f"vectorizer_strategy must be one of {['combined', 'separate', 'both']}, but value is: {vectorizer_strategy}") self.vectorizer_strategy = vectorizer_strategy self.vectorizer_features = None self.prefilter_tokens = prefilter_tokens self.prefilter_token_count = prefilter_token_count self.token_mask = None self._feature_names_dict = dict() def _fit_transform(self, X: DataFrame, y: Series = None, problem_type: str = None, **kwargs) -> (DataFrame, dict): X_out = self._fit_transform_ngrams(X) if self.prefilter_tokens and self.prefilter_token_count >= X_out.shape[1]: logger.warning("`prefilter_tokens` was enabled but `prefilter_token_count` larger than the vocabulary. Disabling `prefilter_tokens`.") self.prefilter_tokens = False if self.prefilter_tokens and problem_type not in ["binary", "regression"]: logger.warning("`prefilter_tokens` was enabled but invalid `problem_type`. Disabling `prefilter_tokens`.") self.prefilter_tokens = False if self.prefilter_tokens and y is None: logger.warning("`prefilter_tokens` was enabled but `y` values were not provided to fit_transform. Disabling `prefilter_tokens`.") self.prefilter_tokens = False if self.prefilter_tokens: scoring_function = f_classif if problem_type == "binary" else f_regression selector = SelectKBest(scoring_function, k=self.prefilter_token_count) selector.fit(X_out, y) self.token_mask = selector.get_support() X_out = X_out[X_out.columns[self.token_mask]] # select the columns that are most correlated with y type_family_groups_special = {S_TEXT_NGRAM: list(X_out.columns)} return X_out, type_family_groups_special def _transform(self, X: DataFrame) -> DataFrame: # TODO: Optimize for inference if not self.features_in: return DataFrame(index=X.index) try: X_out = self._generate_ngrams(X=X) if self.prefilter_tokens: X_out = X_out[X_out.columns[self.token_mask]] # select the columns identified during training except Exception: self._log(40, "\tError: OOM error during NLP feature transform, unrecoverable. Increase memory allocation or reduce data size to avoid this error.") raise return X_out @staticmethod def get_default_infer_features_in_args() -> dict: return dict(required_special_types=[S_TEXT], invalid_special_types=[S_IMAGE_PATH, S_IMAGE_BYTEARRAY]) def _fit_transform_ngrams(self, X): if not self.features_in: return DataFrame(index=X.index) features_nlp_to_remove = [] if self.vectorizer_strategy == "combined": self.vectorizer_features = ["__nlp__"] elif self.vectorizer_strategy == "separate": self.vectorizer_features = copy.deepcopy(self.features_in) elif self.vectorizer_strategy == "both": self.vectorizer_features = ["__nlp__"] + copy.deepcopy(self.features_in) else: raise ValueError(f"vectorizer_strategy must be one of {['combined', 'separate', 'both']}, but value is: {self.vectorizer_features}") self._log(20, f"Fitting {self.vectorizer_default_raw.__class__.__name__} for text features: " + str(self.features_in), self.log_prefix + "\t") self._log(15, f"{self.vectorizer_default_raw}", self.log_prefix + "\t\t") for nlp_feature in self.vectorizer_features: # TODO: Preprocess text? if nlp_feature == "__nlp__": # Combine Text Fields features_in_str = X[self.features_in].astype(str) text_list = list(set([". ".join(row) for row in features_in_str.values])) else: text_list = list(X[nlp_feature].astype(str).drop_duplicates().values) vectorizer_raw = copy.deepcopy(self.vectorizer_default_raw) try: # Don't use transform_matrix output because it may contain fewer rows due to drop_duplicates call. vectorizer_fit, _ = self._train_vectorizer(text_list, vectorizer_raw) self._log(20, f"{vectorizer_fit.__class__.__name__} fit with vocabulary size = {len(vectorizer_fit.vocabulary_)}", self.log_prefix + "\t") except ValueError: self._log(30, f"Removing text_ngram feature due to error: '{nlp_feature}'", self.log_prefix + "\t") if nlp_feature == "__nlp__": self.vectorizer_features = [] features_nlp_to_remove = self.features_in break else: features_nlp_to_remove.append(nlp_feature) else: self.vectorizers.append(vectorizer_fit) self._remove_features_in(features_nlp_to_remove) downsample_ratio = None nlp_failure_count = 0 X_text_ngram = None keep_trying_nlp = True while keep_trying_nlp: try: X_text_ngram = self._generate_ngrams(X=X, downsample_ratio=downsample_ratio) keep_trying_nlp = False except Exception as err: nlp_failure_count += 1 traceback.print_tb(err.__traceback__) X_text_ngram = None skip_nlp = False for vectorizer in self.vectorizers: vocab_size = len(vectorizer.vocabulary_) if vocab_size <= 50: skip_nlp = True break else: if nlp_failure_count >= 3: skip_nlp = True if skip_nlp: self._log( 30, "Warning: ngrams generation resulted in OOM error, removing ngrams features. " "If you want to use ngrams for this problem, increase memory allocation for AutoGluon.", self.log_prefix + "\t", ) self._log(10, str(err)) self.vectorizers = [] self.features_in = [] keep_trying_nlp = False else: self._log( 20, "Warning: ngrams generation resulted in OOM error, attempting to reduce ngram feature count. " "If you want to optimally use ngrams for this problem, increase memory allocation for AutoGluon.", self.log_prefix + "\t", ) self._log(10, str(err)) downsample_ratio = 0.25 if X_text_ngram is None: X_text_ngram = DataFrame(index=X.index) return X_text_ngram def _generate_ngrams(self, X, downsample_ratio: int = None): X_nlp_features_combined = [] for nlp_feature, vectorizer_fit in zip(self.vectorizer_features, self.vectorizers): if nlp_feature == "__nlp__": X_str = X.astype(str) text_data = [". ".join(row) for row in X_str.values] else: nlp_feature_str = X[nlp_feature].astype(str) text_data = nlp_feature_str.values transform_matrix = vectorizer_fit.transform(text_data) if not self._is_fit: transform_matrix = self._adjust_vectorizer_memory_usage( transform_matrix=transform_matrix, text_data=text_data, vectorizer_fit=vectorizer_fit, downsample_ratio=downsample_ratio ) nlp_features_names = vectorizer_fit.get_feature_names_out() nlp_features_names_final = np.array([f"{nlp_feature}.{x}" for x in nlp_features_names] + [f"{nlp_feature}._total_"]) self._feature_names_dict[nlp_feature] = nlp_features_names_final transform_array = transform_matrix.toarray() # This count could technically overflow in absurd situations. Consider making dtype a variable that is computed. nonzero_count = np.count_nonzero(transform_array, axis=1).astype(np.uint16) transform_array = np.append(transform_array, np.expand_dims(nonzero_count, axis=1), axis=1) X_nlp_features = pd.DataFrame(transform_array, columns=self._feature_names_dict[nlp_feature], index=X.index) # TODO: Consider keeping sparse X_nlp_features_combined.append(X_nlp_features) if X_nlp_features_combined: if len(X_nlp_features_combined) == 1: X_nlp_features_combined = X_nlp_features_combined[0] else: X_nlp_features_combined = pd.concat(X_nlp_features_combined, axis=1) else: X_nlp_features_combined = DataFrame(index=X.index) return X_nlp_features_combined # TODO: REMOVE NEED FOR text_data input! def _adjust_vectorizer_memory_usage(self, transform_matrix, text_data, vectorizer_fit, downsample_ratio: int = None): @disable_if_lite_mode(ret=downsample_ratio) def _adjust_per_memory_constraints(downsample_ratio: int): import psutil # This assumes that the ngrams eventually turn into int32/float32 downstream predicted_ngrams_memory_usage_bytes = len(text_data) * 4 * (transform_matrix.shape[1] + 1) + 80 mem_avail = psutil.virtual_memory().available mem_rss = psutil.Process().memory_info().rss predicted_rss = mem_rss + predicted_ngrams_memory_usage_bytes predicted_percentage = predicted_rss / mem_avail if downsample_ratio is None: if self.max_memory_ratio is not None and predicted_percentage > self.max_memory_ratio: self._log(30, "Warning: Due to memory constraints, ngram feature count is being reduced. Allocate more memory to maximize model quality.") return self.max_memory_ratio / predicted_percentage downsample_ratio = _adjust_per_memory_constraints(downsample_ratio) if downsample_ratio is not None: if (downsample_ratio >= 1) or (downsample_ratio <= 0): raise ValueError(f"downsample_ratio must be >0 and <1, but downsample_ratio is {downsample_ratio}") vocab_size = len(vectorizer_fit.vocabulary_) downsampled_vocab_size = int(np.floor(vocab_size * downsample_ratio)) self._log(20, f"Reducing Vectorizer vocab size from {vocab_size} to {downsampled_vocab_size} to avoid OOM error") ngram_freq = get_ngram_freq(vectorizer=vectorizer_fit, transform_matrix=transform_matrix) downscale_vectorizer(vectorizer=vectorizer_fit, ngram_freq=ngram_freq, vocab_size=downsampled_vocab_size) # TODO: This doesn't have to be done twice, can update transform matrix based on new vocab instead of calling .transform # If we have this functionality, simply update transform_matrix each time OOM occurs instead of re-calling .transform transform_matrix = vectorizer_fit.transform(text_data) return transform_matrix @staticmethod def _train_vectorizer(text_data: list, vectorizer): # TODO: Consider upgrading to pandas 0.25.0 to benefit from sparse attribute improvements / bug fixes! # https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.25.0.html transform_matrix = vectorizer.fit_transform(text_data) vectorizer.stop_words_ = None # Reduces object size by 100x+ on large datasets, no effect on usability return vectorizer, transform_matrix def _remove_features_in(self, features): super()._remove_features_in(features) if features: self.vectorizer_features = [feature for feature in self.vectorizer_features if feature not in features]