TimeSeriesPredictor.plot¶
- TimeSeriesPredictor.plot(data: TimeSeriesDataFrame | DataFrame | Path | str, predictions: TimeSeriesDataFrame | None = None, quantile_levels: List[float] | None = None, item_ids: List[str | int] | None = None, max_num_item_ids: int = 8, max_history_length: int | None = None, point_forecast_column: str | None = None, matplotlib_rc_params: dict | None = None)[source]¶
Plot historical time series values and the forecasts.
- Parameters:
data (Union[TimeSeriesDataFrame, pd.DataFrame, Path, str]) – Observed time series data.
predictions (TimeSeriesDataFrame, optional) – Predictions generated by calling
predict()
.quantile_levels (List[float], optional) – Quantile levels for which to plot the prediction intervals. Defaults to lowest & highest quantile levels available in
predictions
.item_ids (List[Union[str, int]], optional) – If provided, plots will only be generated for time series with these item IDs. By default (if set to
None
), item IDs are selected randomly. In either case, plots are generated for at mostmax_num_item_ids
time series.max_num_item_ids (int, default = 8) – At most this many time series will be plotted by the method.
max_history_length (int, optional) – If provided, at most this many time steps will be shown for each time series in
data
.point_forecast_column (str, optional) – Name of the column in
predictions
that will be plotted as the point forecast. Defaults to"0.5"
, if this column is present inpredictions
, otherwise"mean"
.matplotlib_rc_params (dict, optional) – Dictionary describing the plot style that will be passed to [matplotlib.pyplot.rc_context](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.rc_context.html). See [matplotlib documentation](https://matplotlib.org/stable/users/explain/customizing.html#the-default-matplotlibrc-file) for the list of available options.