Multimodal Prediction
navigate_next
Document Data
search
Quick search
code
Show Source
Stable Version Documentation
API
Installation
Tutorials
Github
Other Versions Documentation
Table Of Contents
Tabular Prediction
Predicting Columns in a Table - Quick Start
Predicting Columns in a Table - In Depth
Predicting Columns in a Table - Deployment Optimization
How to use AutoGluon for Kaggle competitions
Multimodal Data Tables: Tabular, Text, and Image
Multimodal Data Tables: Combining BERT/Transformers and Classical Tabular Models
Interpretable rule-based modeling
Training models with GPU support
Predicting Multiple Columns in a Table (Multi-Label Prediction)
Adding a custom model to AutoGluon
Functionality Reference Implementation
Adding a custom model to AutoGluon (Advanced)
Adding a custom metric to AutoGluon
Feature Engineering
FAQ
Multimodal Prediction
Text Data
AutoMM for Text - Quick Start
AutoMM for Text - Multilingual Problems
Named Entity Recognition with AutoMM - Quick Start
AutoMM for Chinese Named Entity Recognition
Image Data – Classification / Regression
AutoMM for Image Classification - Quick Start
CLIP in AutoMM - Zero-Shot Image Classification
Image Data – Object Detection
Quick Start
AutoMM Detection - Quick Start on a Tiny COCO Format Dataset
Data Preparation
AutoMM Detection - Prepare COCO2017 Dataset
AutoMM Detection - Prepare Pascal VOC Dataset
AutoMM Detection - Prepare Watercolor Dataset
Convert Data to COCO Format
AutoMM Detection - Convert VOC Format Dataset to COCO Format
Finetune
AutoMM Detection - Fast Finetune on COCO Format Dataset
AutoMM Detection - High Performance Finetune on COCO Format Dataset
Evaluation
AutoMM Detection - Evaluate Pretrained YOLOv3 on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Faster R-CNN on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Deformable DETR on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Faster R-CNN on VOC Format Dataset
Document Data
Categorizing Scanned Documents with AutoMM
Matching
Text Semantic Search with AutoMM
Text-to-Text Semantic Matching with AutoMM
Image-Text Semantic Matching with AutoMM - Zero-Shot
Image-Text Semantic Matching with AutoMM
Image-to-Image Semantic Matching with AutoMM
Multimodal Data
AutoMM for Image + Text + Tabular - Quick Start
AutoMM for Text + Tabular - Quick Start
AutoMM for Multimodal Named Entity Extraction
Advanced Topics
Single GPU Billion-scale Model Training via Parameter-Efficient Finetuning
Hyperparameter Optimization in AutoMM
Knowledge Distillation in AutoMM
Customize AutoMM
FAQ
Time Series Forecasting
Forecasting Time Series - Quick Start
Forecasting Time Series - In Depth
Forecasting Time Series - Model Zoo
FAQ - Time Series
Cloud Training and Deployment
New managed AutoGluon-Tabular experience on Amazon SageMaker Autopilot
AutoGluon Cloud
Cloud Training with AWS SageMaker
Deploying AutoGluon Models with AWS SageMaker
Deploying AutoGluon models with serverless templates
Exploratory Data Analysis Tools
EDA: Automated Dataset Overview
EDA: Automated Target Variable Analysis
EDA: Automated Quick Model Fit
EDA: Covariate Shift Analysis
Feature Interaction Charting
Cheat Sheet
AutoGluon Predictors
autogluon.features
autogluon.tabular.models
Table Of Contents
Tabular Prediction
Predicting Columns in a Table - Quick Start
Predicting Columns in a Table - In Depth
Predicting Columns in a Table - Deployment Optimization
How to use AutoGluon for Kaggle competitions
Multimodal Data Tables: Tabular, Text, and Image
Multimodal Data Tables: Combining BERT/Transformers and Classical Tabular Models
Interpretable rule-based modeling
Training models with GPU support
Predicting Multiple Columns in a Table (Multi-Label Prediction)
Adding a custom model to AutoGluon
Functionality Reference Implementation
Adding a custom model to AutoGluon (Advanced)
Adding a custom metric to AutoGluon
Feature Engineering
FAQ
Multimodal Prediction
Text Data
AutoMM for Text - Quick Start
AutoMM for Text - Multilingual Problems
Named Entity Recognition with AutoMM - Quick Start
AutoMM for Chinese Named Entity Recognition
Image Data – Classification / Regression
AutoMM for Image Classification - Quick Start
CLIP in AutoMM - Zero-Shot Image Classification
Image Data – Object Detection
Quick Start
AutoMM Detection - Quick Start on a Tiny COCO Format Dataset
Data Preparation
AutoMM Detection - Prepare COCO2017 Dataset
AutoMM Detection - Prepare Pascal VOC Dataset
AutoMM Detection - Prepare Watercolor Dataset
Convert Data to COCO Format
AutoMM Detection - Convert VOC Format Dataset to COCO Format
Finetune
AutoMM Detection - Fast Finetune on COCO Format Dataset
AutoMM Detection - High Performance Finetune on COCO Format Dataset
Evaluation
AutoMM Detection - Evaluate Pretrained YOLOv3 on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Faster R-CNN on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Deformable DETR on COCO Format Dataset
AutoMM Detection - Evaluate Pretrained Faster R-CNN on VOC Format Dataset
Document Data
Categorizing Scanned Documents with AutoMM
Matching
Text Semantic Search with AutoMM
Text-to-Text Semantic Matching with AutoMM
Image-Text Semantic Matching with AutoMM - Zero-Shot
Image-Text Semantic Matching with AutoMM
Image-to-Image Semantic Matching with AutoMM
Multimodal Data
AutoMM for Image + Text + Tabular - Quick Start
AutoMM for Text + Tabular - Quick Start
AutoMM for Multimodal Named Entity Extraction
Advanced Topics
Single GPU Billion-scale Model Training via Parameter-Efficient Finetuning
Hyperparameter Optimization in AutoMM
Knowledge Distillation in AutoMM
Customize AutoMM
FAQ
Time Series Forecasting
Forecasting Time Series - Quick Start
Forecasting Time Series - In Depth
Forecasting Time Series - Model Zoo
FAQ - Time Series
Cloud Training and Deployment
New managed AutoGluon-Tabular experience on Amazon SageMaker Autopilot
AutoGluon Cloud
Cloud Training with AWS SageMaker
Deploying AutoGluon Models with AWS SageMaker
Deploying AutoGluon models with serverless templates
Exploratory Data Analysis Tools
EDA: Automated Dataset Overview
EDA: Automated Target Variable Analysis
EDA: Automated Quick Model Fit
EDA: Covariate Shift Analysis
Feature Interaction Charting
Cheat Sheet
AutoGluon Predictors
autogluon.features
autogluon.tabular.models
Document Data
¶
AutoMM for Scanned Document Classification - Quick Start
document_classification.html
How to use MultiModalPredictor to build a scanned document classifier.
Previous
AutoMM Detection - Evaluate Pretrained Faster R-CNN on VOC Format Dataset
Next
Categorizing Scanned Documents with AutoMM