AutoMM Detection - Finetune on COCO Format Dataset with Customized Settings¶

In this section, our goal is to fast finetune and evaluate a pretrained model
on Pothole dataset in COCO format with customized setting.
Pothole is a single object, i.e. pothole, detection dataset, containing 665 images with bounding box annotations
for the creation of detection models and can work as POC/POV for the maintenance of roads.
See AutoMM Detection - Prepare Pothole Dataset for how to prepare Pothole dataset.
To start, make sure mmcv and mmdet are installed.
Note: MMDet is no longer actively maintained and is only compatible with MMCV version 2.1.0. Installation can be problematic due to CUDA version compatibility issues. For best results:
Use CUDA 12.4 with PyTorch 2.5
Before installation, run:
pip install -U pip setuptools wheel sudo apt-get install -y ninja-build gcc g++
This will help prevent MMCV installation from hanging during wheel building.
After installation in Jupyter notebook, restart the kernel for changes to take effect.
# Update package tools and install build dependencies
!pip install -U pip setuptools wheel
!sudo apt-get install -y ninja-build gcc g++
# Install MMCV
!python3 -m mim install "mmcv==2.1.0"
# For Google Colab users: If the above fails, use this alternative MMCV installation
# pip install "mmcv==2.1.0" -f https://download.openmmlab.com/mmcv/dist/cu121/torch2.1.0/index.html
# Install MMDet
!python3 -m pip install "mmdet==3.2.0"
# Install MMEngine (version >=0.10.6 for PyTorch 2.5 compatibility)
!python3 -m pip install "mmengine>=0.10.6"
from autogluon.multimodal import MultiModalPredictor
/home/ci/autogluon/multimodal/src/autogluon/multimodal/data/templates.py:16: UserWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html. The pkg_resources package is slated for removal as early as 2025-11-30. Refrain from using this package or pin to Setuptools<81.
import pkg_resources
And also import some other packages that will be used in this tutorial:
import os
from autogluon.core.utils.loaders import load_zip
We have the sample dataset ready in the cloud. Let’s download it and store the paths for each data split:
zip_file = "https://automl-mm-bench.s3.amazonaws.com/object_detection/dataset/pothole.zip"
download_dir = "./pothole"
load_zip.unzip(zip_file, unzip_dir=download_dir)
data_dir = os.path.join(download_dir, "pothole")
train_path = os.path.join(data_dir, "Annotations", "usersplit_train_cocoformat.json")
val_path = os.path.join(data_dir, "Annotations", "usersplit_val_cocoformat.json")
test_path = os.path.join(data_dir, "Annotations", "usersplit_test_cocoformat.json")
Downloading ./pothole/file.zip from https://automl-mm-bench.s3.amazonaws.com/object_detection/dataset/pothole.zip...
0%| | 0.00/351M [00:00<?, ?iB/s]
3%|▎ | 9.10M/351M [00:00<00:03, 91.0MiB/s]
5%|▌ | 18.8M/351M [00:00<00:03, 94.6MiB/s]
8%|▊ | 29.3M/351M [00:00<00:03, 99.2MiB/s]
11%|█ | 39.2M/351M [00:00<00:03, 87.4MiB/s]
14%|█▎ | 48.1M/351M [00:00<00:03, 79.2MiB/s]
16%|█▌ | 56.2M/351M [00:00<00:04, 61.4MiB/s]
19%|█▉ | 67.2M/351M [00:00<00:03, 73.3MiB/s]
21%|██▏ | 75.3M/351M [00:00<00:03, 72.8MiB/s]
24%|██▍ | 85.9M/351M [00:01<00:03, 77.1MiB/s]
28%|██▊ | 98.1M/351M [00:01<00:02, 88.9MiB/s]
31%|███ | 108M/351M [00:01<00:02, 90.4MiB/s]
34%|███▎ | 118M/351M [00:01<00:02, 95.4MiB/s]
37%|███▋ | 128M/351M [00:01<00:02, 92.5MiB/s]
39%|███▉ | 138M/351M [00:01<00:03, 65.5MiB/s]
42%|████▏ | 148M/351M [00:01<00:02, 73.3MiB/s]
45%|████▍ | 156M/351M [00:01<00:02, 76.8MiB/s]
47%|████▋ | 166M/351M [00:02<00:02, 81.7MiB/s]
50%|█████ | 176M/351M [00:02<00:02, 86.5MiB/s]
53%|█████▎ | 185M/351M [00:02<00:01, 84.6MiB/s]
55%|█████▌ | 194M/351M [00:02<00:03, 47.0MiB/s]
58%|█████▊ | 204M/351M [00:02<00:02, 57.0MiB/s]
61%|██████▏ | 216M/351M [00:02<00:01, 68.0MiB/s]
64%|██████▍ | 224M/351M [00:02<00:01, 71.7MiB/s]
67%|██████▋ | 235M/351M [00:03<00:01, 80.5MiB/s]
70%|██████▉ | 245M/351M [00:03<00:01, 78.0MiB/s]
73%|███████▎ | 255M/351M [00:03<00:01, 85.5MiB/s]
76%|███████▌ | 266M/351M [00:03<00:00, 91.8MiB/s]
79%|███████▊ | 276M/351M [00:03<00:00, 86.2MiB/s]
82%|████████▏ | 286M/351M [00:03<00:00, 89.6MiB/s]
84%|████████▍ | 295M/351M [00:03<00:00, 74.8MiB/s]
88%|████████▊ | 307M/351M [00:03<00:00, 84.9MiB/s]
90%|█████████ | 316M/351M [00:04<00:00, 68.6MiB/s]
93%|█████████▎| 326M/351M [00:04<00:00, 72.9MiB/s]
96%|█████████▋| 338M/351M [00:04<00:00, 83.7MiB/s]
99%|█████████▉| 347M/351M [00:04<00:00, 69.3MiB/s]
100%|██████████| 351M/351M [00:04<00:00, 76.8MiB/s]
While using COCO format dataset, the input is the json annotation file of the dataset split.
In this example, usersplit_train_cocoformat.json is the annotation file of the train split.
usersplit_val_cocoformat.json is the annotation file of the validation split.
And usersplit_test_cocoformat.json is the annotation file of the test split.
We select the YOLOX-small model pretrained on COCO dataset. With this setting, it is fast to finetune or inference,
and easy to deploy. Note that you can use a larger model by setting the checkpoint_name to corresponding checkpoint name for better performance (but usually with slower speed).
And you may need to change the lr and per_gpu_batch_size for a different model.
An easier way is to use our predefined presets "medium_quality", "high_quality", or "best_quality".
For more about using presets, see Quick Start Coco.
checkpoint_name = "yolox_s"
num_gpus = 1 # only use one GPU
We create the MultiModalPredictor with selected checkpoint name and number of GPUs.
We need to specify the problem_type to "object_detection",
and also provide a sample_data_path for the predictor to infer the categories of the dataset.
Here we provide the train_path, and it also works using any other split of this dataset.
predictor = MultiModalPredictor(
hyperparameters={
"model.mmdet_image.checkpoint_name": checkpoint_name,
"env.num_gpus": num_gpus,
},
problem_type="object_detection",
sample_data_path=train_path,
)
We set the learning rate to be 1e-4.
Note that we use a two-stage learning rate option during finetuning by default,
and the model head will have 100x learning rate.
Using a two-stage learning rate with high learning rate only on head layers makes
the model converge faster during finetuning. It usually gives better performance as well,
especially on small datasets with hundreds or thousands of images.
We set batch size to be 16, and you can increase or decrease the batch size based on your available GPU memory.
We set max number of epochs to 30, number of validation check per interval to 1.0,
and validation check per n epochs to 3 for fast finetuning.
We also compute the time of the fit process here for better understanding the speed.
predictor.fit(
train_path,
tuning_data=val_path,
hyperparameters={
"optim.lr": 1e-4, # we use two stage and detection head has 100x lr
"env.per_gpu_batch_size": 16, # decrease it when model is large or GPU memory is small
"optim.max_epochs": 30, # max number of training epochs, note that we may early stop before this based on validation setting
"optim.val_check_interval": 1.0, # Do 1 validation each epoch
"optim.check_val_every_n_epoch": 3, # Do 1 validation each 3 epochs
"optim.patience": 3, # Early stop after 3 consective validations are not the best
},
)
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
Downloading yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth from https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth...
=================== System Info ===================
AutoGluon Version: 1.4.1b20251117
Python Version: 3.12.10
Operating System: Linux
Platform Machine: x86_64
Platform Version: #1 SMP Wed Mar 12 14:53:59 UTC 2025
CPU Count: 8
Pytorch Version: 2.7.1+cu126
CUDA Version: 12.6
GPU Memory: GPU 0: 14.57/14.57 GB
Total GPU Memory: Free: 14.57 GB, Allocated: 0.00 GB, Total: 14.57 GB
GPU Count: 1
Memory Avail: 28.40 GB / 30.95 GB (91.8%)
===================================================
No path specified. Models will be saved in: "AutogluonModels/ag-20251117_080610"
Using default root folder: ./pothole/pothole/Annotations/... Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong.
Using default root folder: ./pothole/pothole/Annotations/... Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong.
AutoMM starts to create your model. ✨✨✨
To track the learning progress, you can open a terminal and launch Tensorboard:
```shell
# Assume you have installed tensorboard
tensorboard --logdir /home/ci/autogluon/docs/tutorials/multimodal/object_detection/advanced/AutogluonModels/ag-20251117_080610
```
Seed set to 0
0%| | 0.00/36.1M [00:00<?, ?iB/s]
1%| | 267k/36.1M [00:00<00:13, 2.62MiB/s]
2%|▏ | 675k/36.1M [00:00<00:10, 3.47MiB/s]
3%|▎ | 1.22M/36.1M [00:00<00:08, 4.34MiB/s]
5%|▌ | 1.92M/36.1M [00:00<00:06, 5.39MiB/s]
8%|▊ | 2.85M/36.1M [00:00<00:04, 6.80MiB/s]
11%|█ | 4.05M/36.1M [00:00<00:03, 8.46MiB/s]
16%|█▌ | 5.64M/36.1M [00:00<00:02, 10.8MiB/s]
21%|██ | 7.65M/36.1M [00:00<00:02, 13.6MiB/s]
27%|██▋ | 9.75M/36.1M [00:00<00:01, 15.8MiB/s]
31%|███▏ | 11.3M/36.1M [00:01<00:01, 13.0MiB/s]
35%|███▌ | 12.7M/36.1M [00:01<00:01, 13.0MiB/s]
41%|████ | 14.9M/36.1M [00:01<00:01, 15.3MiB/s]
46%|████▌ | 16.5M/36.1M [00:01<00:01, 14.9MiB/s]
52%|█████▏ | 18.6M/36.1M [00:01<00:01, 16.7MiB/s]
58%|█████▊ | 20.9M/36.1M [00:01<00:00, 18.2MiB/s]
64%|██████▍ | 23.1M/36.1M [00:01<00:00, 19.3MiB/s]
70%|██████▉ | 25.2M/36.1M [00:01<00:00, 19.9MiB/s]
76%|███████▌ | 27.4M/36.1M [00:01<00:00, 20.4MiB/s]
82%|████████▏ | 29.7M/36.1M [00:02<00:00, 21.0MiB/s]
88%|████████▊ | 31.9M/36.1M [00:02<00:00, 21.2MiB/s]
94%|█████████▍| 34.1M/36.1M [00:02<00:00, 21.3MiB/s]
---------------------------------------------------------------------------
ModuleNotFoundError Traceback (most recent call last)
Cell In[8], line 1
----> 1 predictor.fit(
2 train_path,
3 tuning_data=val_path,
4 hyperparameters={
5 "optim.lr": 1e-4, # we use two stage and detection head has 100x lr
6 "env.per_gpu_batch_size": 16, # decrease it when model is large or GPU memory is small
7 "optim.max_epochs": 30, # max number of training epochs, note that we may early stop before this based on validation setting
8 "optim.val_check_interval": 1.0, # Do 1 validation each epoch
9 "optim.check_val_every_n_epoch": 3, # Do 1 validation each 3 epochs
10 "optim.patience": 3, # Early stop after 3 consective validations are not the best
11 },
12 )
File ~/autogluon/multimodal/src/autogluon/multimodal/predictor.py:540, in MultiModalPredictor.fit(self, train_data, presets, tuning_data, max_num_tuning_data, id_mappings, time_limit, save_path, hyperparameters, column_types, holdout_frac, teacher_predictor, seed, standalone, hyperparameter_tune_kwargs, clean_ckpts, predictions, labels, predictors)
537 assert isinstance(predictors, list)
538 learners = [ele if isinstance(ele, str) else ele._learner for ele in predictors]
--> 540 self._learner.fit(
541 train_data=train_data,
542 presets=presets,
543 tuning_data=tuning_data,
544 max_num_tuning_data=max_num_tuning_data,
545 time_limit=time_limit,
546 save_path=save_path,
547 hyperparameters=hyperparameters,
548 column_types=column_types,
549 holdout_frac=holdout_frac,
550 teacher_learner=teacher_learner,
551 seed=seed,
552 standalone=standalone,
553 hyperparameter_tune_kwargs=hyperparameter_tune_kwargs,
554 clean_ckpts=clean_ckpts,
555 id_mappings=id_mappings,
556 predictions=predictions,
557 labels=labels,
558 learners=learners,
559 )
561 return self
File ~/autogluon/multimodal/src/autogluon/multimodal/learners/object_detection.py:243, in ObjectDetectionLearner.fit(self, train_data, presets, tuning_data, max_num_tuning_data, time_limit, save_path, hyperparameters, column_types, holdout_frac, seed, standalone, hyperparameter_tune_kwargs, clean_ckpts, **kwargs)
236 self.fit_sanity_check()
237 self.prepare_fit_args(
238 time_limit=time_limit,
239 seed=seed,
240 standalone=standalone,
241 clean_ckpts=clean_ckpts,
242 )
--> 243 fit_returns = self.execute_fit()
244 self.on_fit_end(
245 training_start=training_start,
246 strategy=fit_returns.get("strategy", None),
(...)
249 clean_ckpts=clean_ckpts,
250 )
252 return self
File ~/autogluon/multimodal/src/autogluon/multimodal/learners/base.py:577, in BaseLearner.execute_fit(self)
575 return dict()
576 else:
--> 577 attributes = self.fit_per_run(**self._fit_args)
578 self.update_attributes(**attributes) # only update attributes for non-HPO mode
579 return attributes
File ~/autogluon/multimodal/src/autogluon/multimodal/learners/object_detection.py:380, in ObjectDetectionLearner.fit_per_run(self, max_time, save_path, ckpt_path, resume, enable_progress_bar, seed, hyperparameters, advanced_hyperparameters, config, df_preprocessor, data_processors, model, standalone, clean_ckpts)
375 df_preprocessor = self.get_df_preprocessor_per_run(
376 df_preprocessor=df_preprocessor,
377 config=config,
378 )
379 config = self.update_config_by_data_per_run(config=config, df_preprocessor=df_preprocessor)
--> 380 model = self.get_model_per_run(model=model, config=config)
381 model = self.compile_model_per_run(config=config, model=model)
382 data_processors = self.get_data_processors_per_run(
383 data_processors=data_processors,
384 config=config,
385 model=model,
386 advanced_hyperparameters=advanced_hyperparameters,
387 )
File ~/autogluon/multimodal/src/autogluon/multimodal/learners/object_detection.py:349, in ObjectDetectionLearner.get_model_per_run(self, model, config)
347 def get_model_per_run(self, model, config):
348 if model is None:
--> 349 model = create_fusion_model(
350 config=config,
351 num_classes=self._output_shape,
352 classes=self._classes,
353 )
354 return model
File ~/autogluon/multimodal/src/autogluon/multimodal/models/utils.py:1624, in create_fusion_model(config, num_classes, classes, num_numerical_columns, num_categories, numerical_fill_values, pretrained)
1622 for model_name in names:
1623 model_config = getattr(config.model, model_name)
-> 1624 model = create_model(
1625 model_name=model_name,
1626 model_config=model_config,
1627 num_classes=num_classes,
1628 classes=classes,
1629 num_numerical_columns=num_numerical_columns,
1630 num_categories=num_categories,
1631 numerical_fill_values=numerical_fill_values,
1632 pretrained=pretrained,
1633 )
1635 if isinstance(model, functools.partial): # fusion model
1636 if fusion_model is None:
File ~/autogluon/multimodal/src/autogluon/multimodal/models/utils.py:1421, in create_model(model_name, model_config, num_classes, classes, num_numerical_columns, num_categories, numerical_fill_values, pretrained, is_matching)
1418 elif model_name.lower().startswith(MMDET_IMAGE):
1419 from .mmdet_image import MMDetAutoModelForObjectDetection
-> 1421 model = MMDetAutoModelForObjectDetection(
1422 prefix=model_name,
1423 checkpoint_name=model_config.checkpoint_name,
1424 config_file=model_config.config_file,
1425 classes=classes,
1426 pretrained=pretrained,
1427 output_bbox_format=model_config.output_bbox_format,
1428 frozen_layers=model_config.frozen_layers,
1429 )
1430 elif model_name.lower().startswith(MMOCR_TEXT_DET):
1431 from .mmocr_text_detection import MMOCRAutoModelForTextDetection
File ~/autogluon/multimodal/src/autogluon/multimodal/models/mmdet_image.py:91, in MMDetAutoModelForObjectDetection.__init__(self, prefix, checkpoint_name, config_file, classes, pretrained, output_bbox_format, frozen_layers)
88 self._load_config()
90 self._update_classes(classes)
---> 91 self._load_checkpoint(self.checkpoint_file)
93 freeze_model_layers(self.model, self.frozen_layers)
File ~/autogluon/multimodal/src/autogluon/multimodal/models/mmdet_image.py:121, in MMDetAutoModelForObjectDetection._load_checkpoint(self, checkpoint_file)
117 def _load_checkpoint(self, checkpoint_file):
118 # build model and load pretrained weights
119 from mmdet.utils import register_all_modules
--> 121 register_all_modules() # https://github.com/open-mmlab/mmdetection/issues/9719
123 self.model = MODELS.build(self.config.model)
124 # yolox use self.config.model.data_preprocessor, yolov3 use self.config.data_preprocessor
File ~/opt/venv/lib/python3.12/site-packages/mmdet/utils/setup_env.py:97, in register_all_modules(init_default_scope)
86 def register_all_modules(init_default_scope: bool = True) -> None:
87 """Register all modules in mmdet into the registries.
88
89 Args:
(...)
95 Defaults to True.
96 """ # noqa
---> 97 import mmdet.datasets # noqa: F401,F403
98 import mmdet.engine # noqa: F401,F403
99 import mmdet.evaluation # noqa: F401,F403
File ~/opt/venv/lib/python3.12/site-packages/mmdet/datasets/__init__.py:26
22 from .reid_dataset import ReIDDataset
23 from .samplers import (AspectRatioBatchSampler, ClassAwareSampler,
24 GroupMultiSourceSampler, MultiSourceSampler,
25 TrackAspectRatioBatchSampler, TrackImgSampler)
---> 26 from .utils import get_loading_pipeline
27 from .v3det import V3DetDataset
28 from .voc import VOCDataset
File ~/opt/venv/lib/python3.12/site-packages/mmdet/datasets/utils.py:5
1 # Copyright (c) OpenMMLab. All rights reserved.
3 from mmcv.transforms import LoadImageFromFile
----> 5 from mmdet.datasets.transforms import LoadAnnotations, LoadPanopticAnnotations
6 from mmdet.registry import TRANSFORMS
9 def get_loading_pipeline(pipeline):
File ~/opt/venv/lib/python3.12/site-packages/mmdet/datasets/transforms/__init__.py:6
2 from .augment_wrappers import AutoAugment, RandAugment
3 from .colorspace import (AutoContrast, Brightness, Color, ColorTransform,
4 Contrast, Equalize, Invert, Posterize, Sharpness,
5 Solarize, SolarizeAdd)
----> 6 from .formatting import (ImageToTensor, PackDetInputs, PackReIDInputs,
7 PackTrackInputs, ToTensor, Transpose)
8 from .frame_sampling import BaseFrameSample, UniformRefFrameSample
9 from .geometric import (GeomTransform, Rotate, ShearX, ShearY, TranslateX,
10 TranslateY)
File ~/opt/venv/lib/python3.12/site-packages/mmdet/datasets/transforms/formatting.py:11
9 from mmdet.registry import TRANSFORMS
10 from mmdet.structures import DetDataSample, ReIDDataSample, TrackDataSample
---> 11 from mmdet.structures.bbox import BaseBoxes
14 @TRANSFORMS.register_module()
15 class PackDetInputs(BaseTransform):
16 """Pack the inputs data for the detection / semantic segmentation /
17 panoptic segmentation.
18
(...)
42 'scale_factor', 'flip', 'flip_direction')``
43 """
File ~/opt/venv/lib/python3.12/site-packages/mmdet/structures/bbox/__init__.py:2
1 # Copyright (c) OpenMMLab. All rights reserved.
----> 2 from .base_boxes import BaseBoxes
3 from .bbox_overlaps import bbox_overlaps
4 from .box_type import (autocast_box_type, convert_box_type, get_box_type,
5 register_box, register_box_converter)
File ~/opt/venv/lib/python3.12/site-packages/mmdet/structures/bbox/base_boxes.py:9
6 import torch
7 from torch import BoolTensor, Tensor
----> 9 from mmdet.structures.mask.structures import BitmapMasks, PolygonMasks
11 T = TypeVar('T')
12 DeviceType = Union[str, torch.device]
File ~/opt/venv/lib/python3.12/site-packages/mmdet/structures/mask/__init__.py:3
1 # Copyright (c) OpenMMLab. All rights reserved.
2 from .mask_target import mask_target
----> 3 from .structures import (BaseInstanceMasks, BitmapMasks, PolygonMasks,
4 bitmap_to_polygon, polygon_to_bitmap)
5 from .utils import encode_mask_results, mask2bbox, split_combined_polys
7 __all__ = [
8 'split_combined_polys', 'mask_target', 'BaseInstanceMasks', 'BitmapMasks',
9 'PolygonMasks', 'encode_mask_results', 'mask2bbox', 'polygon_to_bitmap',
10 'bitmap_to_polygon'
11 ]
File ~/opt/venv/lib/python3.12/site-packages/mmdet/structures/mask/structures.py:12
10 import shapely.geometry as geometry
11 import torch
---> 12 from mmcv.ops.roi_align import roi_align
14 T = TypeVar('T')
17 class BaseInstanceMasks(metaclass=ABCMeta):
File ~/opt/venv/lib/python3.12/site-packages/mmcv/ops/__init__.py:3
1 # Copyright (c) OpenMMLab. All rights reserved.
2 from mmcv.utils import IS_MLU_AVAILABLE
----> 3 from .active_rotated_filter import active_rotated_filter
4 from .assign_score_withk import assign_score_withk
5 from .ball_query import ball_query
File ~/opt/venv/lib/python3.12/site-packages/mmcv/ops/active_rotated_filter.py:10
6 from torch.autograd.function import once_differentiable
8 from ..utils import ext_loader
---> 10 ext_module = ext_loader.load_ext(
11 '_ext',
12 ['active_rotated_filter_forward', 'active_rotated_filter_backward'])
15 class ActiveRotatedFilterFunction(Function):
16 """Encoding the orientation information and generating orientation-
17 sensitive features.
18
19 The details are described in the paper `Align Deep Features for Oriented
20 Object Detection <https://arxiv.org/abs/2008.09397>_`.
21 """
File ~/opt/venv/lib/python3.12/site-packages/mmcv/utils/ext_loader.py:13, in load_ext(name, funcs)
12 def load_ext(name, funcs):
---> 13 ext = importlib.import_module('mmcv.' + name)
14 for fun in funcs:
15 assert hasattr(ext, fun), f'{fun} miss in module {name}'
File /usr/local/lib/python3.12/importlib/__init__.py:90, in import_module(name, package)
88 break
89 level += 1
---> 90 return _bootstrap._gcd_import(name[level:], package, level)
ModuleNotFoundError: No module named 'mmcv._ext'
To evaluate the model we just trained, run:
predictor.evaluate(test_path)
Note that it’s always recommended to use our predefined presets to save customization time with following code script:
predictor = MultiModalPredictor(
problem_type="object_detection",
sample_data_path=train_path,
presets="medium_quality",
)
predictor.fit(train_path, tuning_data=val_path)
predictor.evaluate(test_path)
For more about using presets, see Quick Start Coco.
And the evaluation results are shown in command line output. The first value is mAP in COCO standard, and the second one is mAP in VOC standard (or mAP50). For more details about these metrics, see COCO’s evaluation guideline.
We can get the prediction on test set:
pred = predictor.predict(test_path)
Let’s also visualize the prediction result:
!pip install opencv-python
from autogluon.multimodal.utils import visualize_detection
conf_threshold = 0.25 # Specify a confidence threshold to filter out unwanted boxes
visualization_result_dir = "./" # Use the pwd as result dir to save the visualized image
visualized = visualize_detection(
pred=pred[12:13],
detection_classes=predictor.classes,
conf_threshold=conf_threshold,
visualization_result_dir=visualization_result_dir,
)
from PIL import Image
from IPython.display import display
img = Image.fromarray(visualized[0][:, :, ::-1], 'RGB')
display(img)
Under this fast finetune setting, we reached a good mAP number on a new dataset with a few hundred seconds!
For how to finetune with higher performance,
see AutoMM Detection - High Performance Finetune on COCO Format Dataset, where we finetuned a VFNet model with
5 hours and reached mAP = 0.450, mAP50 = 0.718 on this dataset.
Other Examples¶
You may go to AutoMM Examples to explore other examples about AutoMM.
Customization¶
To learn how to customize AutoMM, please refer to Customize AutoMM.
Citation¶
@article{DBLP:journals/corr/abs-2107-08430,
author = {Zheng Ge and
Songtao Liu and
Feng Wang and
Zeming Li and
Jian Sun},
title = {{YOLOX:} Exceeding {YOLO} Series in 2021},
journal = {CoRR},
volume = {abs/2107.08430},
year = {2021},
url = {https://arxiv.org/abs/2107.08430},
eprinttype = {arXiv},
eprint = {2107.08430},
timestamp = {Tue, 05 Apr 2022 14:09:44 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2107-08430.bib},
bibsource = {dblp computer science bibliography, https://dblp.org},
}