Source code for autogluon.timeseries.metrics.quantile

from typing import Optional

import numpy as np
import pandas as pd

from autogluon.timeseries.dataset.ts_dataframe import TimeSeriesDataFrame

from .abstract import TimeSeriesScorer
from .utils import in_sample_abs_seasonal_error


[docs] class WQL(TimeSeriesScorer): r"""Weighted quantile loss. Also known as weighted pinball loss. Defined as total quantile loss divided by the sum of absolute time series values in the forecast horizon. .. math:: \operatorname{WQL} = \frac{1}{\sum_{i=1}^{N} \sum_{t=T+1}^{T+H} |y_{i, t}|} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} \sum_{q} \rho_q(y_{i,t}, f^q_{i,t}) Properties: - scale-dependent (time series with large absolute value contribute more to the loss) - equivalent to WAPE if ``quantile_levels = [0.5]`` References ---------- - `Forecasting: Principles and Practice <https://otexts.com/fpp3/distaccuracy.html#quantile-scores>`_ """ needs_quantile = True def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, q_pred, quantile_levels = self._get_quantile_forecast_score_inputs(data_future, predictions, target) values_true = y_true.values[:, None] # shape [N, 1] values_pred = q_pred.values # shape [N, len(quantile_levels)] return 2 * np.mean( np.nansum(np.abs((values_true - values_pred) * ((values_true <= values_pred) - quantile_levels)), axis=0) / np.nansum(np.abs(values_true)) )
[docs] class SQL(TimeSeriesScorer): r"""Scaled quantile loss. Also known as scaled pinball loss. Normalizes the quantile loss for each time series by the historic seasonal error of this time series. .. math:: \operatorname{SQL} = \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N} \frac{1}{a_i} \sum_{t=T+1}^{T+H} \sum_{q} \rho_q(y_{i,t}, f^q_{i,t}) where :math:`a_i` is the historic absolute seasonal error defined as .. math:: a_i = \frac{1}{T-m} \sum_{t=m+1}^T |y_{i,t} - y_{i,t-m}| and :math:`m` is the seasonal period of the time series (``eval_metric_seasonal_period``). Properties: - scaled metric (normalizes the error for each time series by the scale of that time series) - undefined for constant time series - equivalent to MASE if ``quantile_levels = [0.5]`` References ---------- - `Forecasting: Principles and Practice <https://otexts.com/fpp3/distaccuracy.html#quantile-scores>`_ """ needs_quantile = True def __init__(self): self._past_abs_seasonal_error: Optional[pd.Series] = None def save_past_metrics( self, data_past: TimeSeriesDataFrame, target: str = "target", seasonal_period: int = 1, **kwargs ) -> None: self._past_abs_seasonal_error = in_sample_abs_seasonal_error( y_past=data_past[target], seasonal_period=seasonal_period ) def clear_past_metrics(self) -> None: self._past_abs_seasonal_error = None def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: if self._past_abs_seasonal_error is None: raise AssertionError("Call `save_past_metrics` before `compute_metric`") y_true, q_pred, quantile_levels = self._get_quantile_forecast_score_inputs(data_future, predictions, target) q_pred = q_pred.values values_true = y_true.values[:, None] # shape [N, 1] ql = np.abs((q_pred - values_true) * ((values_true <= q_pred) - quantile_levels)).mean(axis=1) num_items = len(self._past_abs_seasonal_error) # Reshape quantile losses values into [num_items, prediction_length] to normalize per item without groupby quantile_losses = ql.reshape([num_items, -1]) return 2 * self._safemean(quantile_losses / self._past_abs_seasonal_error.values[:, None])