TimeSeriesDataFrame.from_iterable_dataset#
- classmethod TimeSeriesDataFrame.from_iterable_dataset(iterable_dataset: Iterable, num_cpus: int = -1) DataFrame [source]#
Construct a
TimeSeriesDataFrame
from an Iterable of dictionaries each of which represent a single time series.This function also offers compatibility with GluonTS data sets, see https://ts.gluon.ai/_modules/gluonts/dataset/common.html#ListDataset.
- Parameters
iterable_dataset (Iterable) –
An iterator over dictionaries, each with a
target
field specifying the value of the (univariate) time series, and astart
field that features a pandas Timestamp with features. Example:iterable_dataset = [ {"target": [0, 1, 2], "start": pd.Timestamp("01-01-2019", freq='D')}, {"target": [3, 4, 5], "start": pd.Timestamp("01-01-2019", freq='D')}, {"target": [6, 7, 8], "start": pd.Timestamp("01-01-2019", freq='D')} ]
num_cpus (int, default = -1) – Number of CPU cores used to process the iterable dataset in parallel. Set to -1 to use all cores.
- Returns
ts_df – A data frame in TimeSeriesDataFrame format.
- Return type