Source code for autogluon.vision.image_prediction.image_prediction

"""Image Prediction task"""
import copy
import pickle
import logging

import pandas as pd
from autogluon.core.utils import verbosity2loglevel
from gluoncv.auto.tasks import ImageClassification as _ImageClassification
from gluoncv.model_zoo import get_model_list

__all__ = ['ImagePredictor']

[docs]class ImagePredictor(object): """AutoGluon Predictor for predicting image category based on their whole contents Parameters ---------- log_dir : str The directory for saving logs, by default using `pwd`: the current working directory. """ # Dataset is a subclass of `pd.DataFrame`, with `image` and `label` columns. Dataset = _ImageClassification.Dataset def __init__(self, log_dir=None): self._log_dir = log_dir self._classifier = None self._fit_summary = {}
[docs] def fit(self, train_data, val_data=None, holdout_frac=0.1, random_state=None, time_limit=12*60*60, num_trials=1, hyperparameters=None, search_strategy='random', scheduler_options=None, nthreads_per_trial=None, ngpus_per_trial=None, dist_ip_addrs=None, verbosity=3): """Automatic fit process for image prediction. Parameters ---------- train_data : pd.DataFrame or str Training data, can be a dataframe like image dataset. For dataframe like datasets, `image` and `label` columns are required. `image`: raw image paths. `label`: categorical integer id, starting from 0. For more details of how to construct a dataset for image predictor, check out: `http://preview.d2l.ai/d8/main/image_classification/getting_started.html`. If a string is provided, will search for k8 built-in datasets. val_data : pd.DataFrame or str, default = None Training data, can be a dataframe like image dataset. If a string is provided, will search for k8 datasets. If `None`, the validation dataset will be randomly split from `train_data`. holdout_frac : float, default = 0.1 The random split ratio for `val_data` if `val_data==None`. random_state : numpy.random.state, default = None The random_state for shuffling, only used if `val_data==None`. Note that the `random_state` only affect the splitting process, not model training. time_limit : int, default = 43200 Time limit in seconds, default is 12 hours. If `time_limit` is hit during `fit`, the HPO process will interrupt and return the current best configuration. num_trials : int, default = 1 The number of HPO trials. If `None`, will run infinite trials until `time_limit` is met. hyperparameters : dict, default = None Extra hyperparameters for specific models. Accepted args includes(not limited to): epochs : int, default value based on network The `epochs` for model training. net : mx.gluon.Block The custom network. If defined, the model name in config will be ignored so your custom network will be used for training rather than pulling it from model zoo. optimizer : mx.Optimizer The custom optimizer object. If defined, the optimizer will be ignored in config but this object will be used in training instead. batch_size : int Mini batch size lr : float Trainer learning rate for optimization process. You can get the list of accepted hyperparameters in `config.yaml` saved by this predictor. search_strategy : str, default = 'random' Searcher strategy for HPO, 'random' by default. Options include: ‘random’ (random search), ‘bayesopt’ (Gaussian process Bayesian optimization), ‘skopt’ (SKopt Bayesian optimization), ‘grid’ (grid search). scheduler_options : dict, default = None Extra options for HPO scheduler, please refer to `autogluon.core.Searcher` for details. nthreads_per_trial : int, default = (# cpu cores) Number of CPU threads for each trial, if `None`, will detect the # cores on current instance. ngpus_per_trial : int, default = (# gpus) Number of GPUs to use for each trial, if `None`, will detect the # gpus on current instance. dist_ip_addrs : list, default = None If not `None`, will spawn tasks on distributed nodes. verbosity : int, default = 3 Controls how detailed of a summary to ouput. Set <= 0 for no output printing, 1 to print just high-level summary, 2 to print summary and create plots, >= 3 to print all information produced during fit(). """ log_level = verbosity2loglevel(verbosity) use_rec = False if isinstance(train_data, str) and train_data == 'imagenet': logging.warn('ImageNet is a huge dataset which cannot be downloaded directly, ' + 'please follow the data preparation tutorial in GluonCV.' + 'The following record files(symlinks) will be used: \n' + 'rec_train : ~/.mxnet/datasets/imagenet/rec/train.rec\n' + 'rec_train_idx : ~/.mxnet/datasets/imagenet/rec/train.idx\n' + 'rec_val : ~/.mxnet/datasets/imagenet/rec/val.rec\n' + 'rec_val_idx : ~/.mxnet/datasets/imagenet/rec/val.idx\n') train_data = pd.DataFrame({'image': [], 'label': []}) val_data = pd.DataFrame({'image': [], 'label': []}) use_rec = True if isinstance(train_data, str): from d8.image_classification import Dataset as D8D names = D8D.list() if train_data.lower() in names: train_data = D8D.get(train_data) else: valid_names = '\n'.join(names) raise ValueError(f'`train_data` {train_data} is not among valid list {valid_names}') if val_data is None: train_data, val_data = train_data.split(1 - holdout_frac) if isinstance(val_data, str): from d8.image_classification import Dataset as D8D names = D8D.list() if val_data.lower() in names: val_data = D8D.get(val_data) else: valid_names = '\n'.join(names) raise ValueError(f'`val_data` {val_data} is not among valid list {valid_names}') if self._classifier is not None: logging.getLogger("ImageClassificationEstimator").propagate = True self._classifier._logger.setLevel(log_level) self._fit_summary = self._classifier.fit(train_data, val_data, 1 - holdout_frac, random_state, resume=False) return # new HPO task if time_limit is None and num_trials is None: raise ValueError('`time_limit` and `num_trials` can not be `None` at the same time, ' 'otherwise the training will not be terminated gracefully.') config={'log_dir': self._log_dir, 'num_trials': 99999 if num_trials is None else max(1, num_trials), 'time_limits': 2147483647 if time_limit is None else max(1, time_limit), 'search_strategy': search_strategy, } if nthreads_per_trial is not None: config['nthreads_per_trial'] = nthreads_per_trial if ngpus_per_trial is not None: config['ngpus_per_trial'] = ngpus_per_trial if dist_ip_addrs is not None: config['dist_ip_addrs'] = dist_ip_addrs if isinstance(hyperparameters, dict): net = hyperparameters.pop('net', None) if net is not None: config['custom_net'] = net optimizer = hyperparameters.pop('optimizer', None) if optimizer is not None: config['custom_optimizer'] = optimizer # check if hyperparameters overwriting existing config for k, v in hyperparameters.items(): if k in config: raise ValueError(f'Overwriting {k} = {config[k]} to {v} by hyperparameters is ambiguous.') config.update(hyperparameters) if scheduler_options is not None: config.update(scheduler_options) if use_rec == True: config['use_rec'] = True # verbosity if log_level > logging.INFO: logging.getLogger('gluoncv.auto.tasks.image_classification').propagate = False logging.getLogger("ImageClassificationEstimator").propagate = False logging.getLogger("ImageClassificationEstimator").setLevel(log_level) task = _ImageClassification(config=config) task._logger.setLevel(log_level) task._logger.propagate = True self._classifier = task.fit(train_data, val_data, 1 - holdout_frac, random_state) self._classifier._logger.setLevel(log_level) self._classifier._logger.propagate = True self._fit_summary = task.fit_summary()
[docs] def predict_proba(self, x): """Predict images as a whole, return the probabilities of each category rather than class-labels. Parameters ---------- x : str, pd.DataFrame or ndarray The input, can be str(filepath), pd.DataFrame with 'image' column, or raw ndarray input. Returns ------- pd.DataFrame The returned dataframe will contain probs of each category. If more than one image in input, the returned dataframe will contain `images` column, and all results are concatenated. """ if self._classifier is None: raise RuntimeError('Classifier is not initialized, try `fit` first.') proba = self._classifier.predict(x) if 'image' in proba.columns: return proba.groupby(["image"]).agg(list) return proba
[docs] def predict(self, x): """Predict images as a whole, return labels(class category). Parameters ---------- x : str, pd.DataFrame or ndarray The input, can be str(filepath), pd.DataFrame with 'image' column, or raw ndarray input. Returns ------- pd.DataFrame The returned dataframe will contain labels. If more than one image in input, the returned dataframe will contain `images` column, and all results are concatenated. """ if self._classifier is None: raise RuntimeError('Classifier is not initialized, try `fit` first.') proba = self._classifier.predict(x) if 'image' in proba.columns: # multiple images return proba.loc[proba.groupby(["image"])["score"].idxmax()].reset_index(drop=True) else: # single image return proba.loc[[proba["score"].idxmax()]]
[docs] def predict_feature(self, x): """Predict images visual feature representations, return the features as numpy (1xD) vector. Parameters ---------- x : str, pd.DataFrame or ndarray The input, can be str(filepath), pd.DataFrame with 'image' column, or raw ndarray input. Returns ------- pd.DataFrame The returned dataframe will contain image features. If more than one image in input, the returned dataframe will contain `images` column, and all results are concatenated. """ if self._classifier is None: raise RuntimeError('Classifier is not initialized, try `fit` first.') return self._classifier.predict_feature(x)
[docs] def evaluate(self, val_data): """Evaluate model performance on validation data. Parameters ---------- val_data : pd.DataFrame or iterator The validation data. """ if self._classifier is None: raise RuntimeError('Classifier not initialized, try `fit` first.') return self._classifier.evaluate(val_data)
[docs] def fit_summary(self): """Return summary of last `fit` process. Returns ------- dict The summary of last `fit` process. Major keys are ('train_acc', 'val_acc', 'total_time',...) """ return copy.copy(self._fit_summary)
[docs] def save(self, file_name): """Dump predictor to disk. Parameters ---------- file_name : str The file name of saved copy. """ with open(file_name, 'wb') as fid: pickle.dump(self, fid)
[docs] @classmethod def load(cls, file_name): """Load previously saved predictor. Parameters ---------- file_name : str The file name for saved pickle file. """ with open(file_name, 'rb') as fid: obj = pickle.load(fid) return obj
[docs] @classmethod def list_models(cls): """Get the list of supported model names in model zoo that can be used for image classification. Returns ------- tuple of str A tuple of supported model names in str. """ return tuple(_SUPPORTED_MODELS)
def _get_supported_models(): all_models = get_model_list() blacklist = ['ssd', 'faster_rcnn', 'mask_rcnn', 'fcn', 'deeplab', 'psp', 'icnet', 'fastscnn', 'danet', 'yolo', 'pose', 'center_net', 'siamrpn', 'monodepth', 'ucf101', 'kinetics', 'voc', 'coco', 'citys', 'mhpv1', 'ade', 'hmdb51', 'sthsth', 'otb'] cls_models = [m for m in all_models if not any(x in m for x in blacklist)] return cls_models _SUPPORTED_MODELS = _get_supported_models()