Searchable Objects¶
When defining custom Python objects such as network architectures, or specialized optimizers, it may be hard to decide what values to set for all of their attributes. AutoGluon provides an API that allows you to instead specify a search space of possible values to consider for such attributes, within which the optimal value will be automatically searched for at runtime. This tutorial demonstrates how easy this is to do, without having to modify your existing code at all!
Example for Constructing a Network¶
This tutorial covers an example of selecting a neural network’s
architecture as a hyperparameter optimization (HPO) task. If you are
interested in efficient neural architecture search (NAS), please refer
to this other tutorial instead: sec_proxyless
_ .
CIFAR ResNet in GluonCV¶
GluonCV provides CIFARResNet, which allow user to specify how many layers at each stage. For example, we can construct a CIFAR ResNet with only 1 layer per stage:
from gluoncv.model_zoo.cifarresnet import CIFARResNetV1, CIFARBasicBlockV1
layers = [1, 1, 1]
channels = [16, 16, 32, 64]
net = CIFARResNetV1(CIFARBasicBlockV1, layers, channels)
We can visualize the network:
import autogluon.core as ag
from autogluon.vision.utils import plot_network
plot_network(net, (1, 3, 32, 32))
Searchable Network Architecture Using AutoGluon Object¶
autogluon.obj()
enables customized search space to any user
defined class. It can also be used within autogluon.Categorical()
if
you have multiple networks to choose from.
@ag.obj(
nstage1=ag.space.Int(2, 4),
nstage2=ag.space.Int(2, 4),
)
class MyCifarResNet(CIFARResNetV1):
def __init__(self, nstage1, nstage2):
nstage3 = 9 - nstage1 - nstage2
layers = [nstage1, nstage2, nstage3]
channels = [16, 16, 32, 64]
super().__init__(CIFARBasicBlockV1, layers=layers, channels=channels)
Create one network instance and print the configuration space:
mynet=MyCifarResNet()
print(mynet.cs)
Configuration space object:
Hyperparameters:
nstage1, Type: UniformInteger, Range: [2, 4], Default: 3
nstage2, Type: UniformInteger, Range: [2, 4], Default: 3
We can also overwrite existing search spaces:
mynet1 = MyCifarResNet(nstage1=1,
nstage2=ag.space.Int(5, 10))
print(mynet1.cs)
Configuration space object:
Hyperparameters:
nstage2, Type: UniformInteger, Range: [5, 10], Default: 8
Decorate Existing Class¶
We can also use autogluon.obj()
to easily decorate any existing
classes. For example, if we want to search learning rate and weight
decay for Adam optimizer, we only need to add a decorator:
from mxnet import optimizer as optim
@ag.obj()
class Adam(optim.Adam):
pass
Then we can create an instance:
myoptim = Adam(learning_rate=ag.Real(1e-2, 1e-1, log=True), wd=ag.Real(1e-5, 1e-3, log=True))
print(myoptim.cs)
Configuration space object:
Hyperparameters:
learning_rate, Type: UniformFloat, Range: [0.01, 0.1], Default: 0.0316227766, on log-scale
wd, Type: UniformFloat, Range: [1e-05, 0.001], Default: 0.0001, on log-scale
Launch Experiments Using AutoGluon Object¶
AutoGluon Object is compatible with Fit API in AutoGluon tasks, and also
works with user-defined training scripts using
autogluon.autogluon_register_args()
. We can start fitting:
from autogluon.vision import ImagePredictor
classifier = ImagePredictor().fit('cifar10', hyperparameters={'net': mynet, 'optimizer': myoptim, 'epochs': 1}, ngpus_per_trial=1)
INFO:root:time_limit=auto set to time_limit=7200. INFO:gluoncv.auto.tasks.image_classification:Starting fit without HPO INFO:ImageClassificationEstimator:modified configs(<old> != <new>): { INFO:ImageClassificationEstimator:root.img_cls.model resnet50_v1 != resnet50_v1b INFO:ImageClassificationEstimator:root.train.early_stop_baseline 0.0 != -inf INFO:ImageClassificationEstimator:root.train.rec_train ~/.mxnet/datasets/imagenet/rec/train.rec != auto INFO:ImageClassificationEstimator:root.train.epochs 10 != 1 INFO:ImageClassificationEstimator:root.train.num_training_samples 1281167 != -1 INFO:ImageClassificationEstimator:root.train.lr 0.1 != 0.01 INFO:ImageClassificationEstimator:root.train.early_stop_patience -1 != 10 INFO:ImageClassificationEstimator:root.train.batch_size 128 != 16 INFO:ImageClassificationEstimator:root.train.data_dir ~/.mxnet/datasets/imagenet != auto INFO:ImageClassificationEstimator:root.train.early_stop_max_value 1.0 != inf INFO:ImageClassificationEstimator:root.train.rec_val_idx ~/.mxnet/datasets/imagenet/rec/val.idx != auto INFO:ImageClassificationEstimator:root.train.num_workers 4 != 8 INFO:ImageClassificationEstimator:root.train.rec_train_idx ~/.mxnet/datasets/imagenet/rec/train.idx != auto INFO:ImageClassificationEstimator:root.train.rec_val ~/.mxnet/datasets/imagenet/rec/val.rec != auto INFO:ImageClassificationEstimator:root.valid.num_workers 4 != 8 INFO:ImageClassificationEstimator:root.valid.batch_size 128 != 16 INFO:ImageClassificationEstimator:} INFO:ImageClassificationEstimator:Saved config to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/3d06fc69/.trial_0/config.yaml INFO:ImageClassificationEstimator:Start training from [Epoch 0] INFO:ImageClassificationEstimator:Epoch[0] Batch [49] Speed: 98.277190 samples/sec accuracy=0.147500 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [99] Speed: 100.961702 samples/sec accuracy=0.223750 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [149] Speed: 100.130260 samples/sec accuracy=0.270833 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [199] Speed: 99.726518 samples/sec accuracy=0.312188 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [249] Speed: 99.050539 samples/sec accuracy=0.338000 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [299] Speed: 98.704300 samples/sec accuracy=0.358750 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [349] Speed: 98.056224 samples/sec accuracy=0.378750 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [399] Speed: 97.617914 samples/sec accuracy=0.391094 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [449] Speed: 96.955558 samples/sec accuracy=0.406389 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [499] Speed: 96.517793 samples/sec accuracy=0.421375 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [549] Speed: 95.847380 samples/sec accuracy=0.433750 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [599] Speed: 95.520561 samples/sec accuracy=0.442812 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [649] Speed: 94.993512 samples/sec accuracy=0.453558 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [699] Speed: 94.520986 samples/sec accuracy=0.461964 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [749] Speed: 94.071722 samples/sec accuracy=0.469500 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [799] Speed: 93.676169 samples/sec accuracy=0.479531 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [849] Speed: 93.647335 samples/sec accuracy=0.488015 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [899] Speed: 93.677145 samples/sec accuracy=0.492986 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [949] Speed: 93.690152 samples/sec accuracy=0.501711 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [999] Speed: 93.715645 samples/sec accuracy=0.507938 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1049] Speed: 93.662787 samples/sec accuracy=0.513452 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1099] Speed: 93.861704 samples/sec accuracy=0.519091 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1149] Speed: 93.886134 samples/sec accuracy=0.523967 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1199] Speed: 93.712441 samples/sec accuracy=0.527552 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1249] Speed: 93.806723 samples/sec accuracy=0.532700 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1299] Speed: 93.789475 samples/sec accuracy=0.538077 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1349] Speed: 93.655937 samples/sec accuracy=0.541852 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1399] Speed: 93.551808 samples/sec accuracy=0.545491 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1449] Speed: 93.566871 samples/sec accuracy=0.549095 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1499] Speed: 93.830775 samples/sec accuracy=0.552625 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1549] Speed: 93.648229 samples/sec accuracy=0.556371 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1599] Speed: 93.669368 samples/sec accuracy=0.559297 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1649] Speed: 93.759384 samples/sec accuracy=0.562083 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1699] Speed: 93.696457 samples/sec accuracy=0.565478 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1749] Speed: 93.618592 samples/sec accuracy=0.568214 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1799] Speed: 93.690035 samples/sec accuracy=0.571528 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1849] Speed: 93.605656 samples/sec accuracy=0.575068 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1899] Speed: 93.622928 samples/sec accuracy=0.577237 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1949] Speed: 93.470358 samples/sec accuracy=0.580160 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [1999] Speed: 93.412577 samples/sec accuracy=0.582969 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2049] Speed: 93.757262 samples/sec accuracy=0.585366 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2099] Speed: 93.666570 samples/sec accuracy=0.587649 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2149] Speed: 93.761755 samples/sec accuracy=0.589651 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2199] Speed: 93.689258 samples/sec accuracy=0.591847 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2249] Speed: 93.733656 samples/sec accuracy=0.594028 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2299] Speed: 93.829279 samples/sec accuracy=0.596386 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2349] Speed: 93.699380 samples/sec accuracy=0.598457 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2399] Speed: 93.697371 samples/sec accuracy=0.600729 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2449] Speed: 93.582043 samples/sec accuracy=0.602449 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2499] Speed: 93.677260 samples/sec accuracy=0.604150 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2549] Speed: 93.648556 samples/sec accuracy=0.605784 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2599] Speed: 93.490788 samples/sec accuracy=0.607115 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2649] Speed: 93.753272 samples/sec accuracy=0.609104 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2699] Speed: 93.711310 samples/sec accuracy=0.611157 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2749] Speed: 93.721484 samples/sec accuracy=0.612795 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2799] Speed: 93.854786 samples/sec accuracy=0.614531 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2849] Speed: 93.634593 samples/sec accuracy=0.616360 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2899] Speed: 93.580996 samples/sec accuracy=0.617845 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2949] Speed: 93.663019 samples/sec accuracy=0.619428 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [2999] Speed: 93.703004 samples/sec accuracy=0.621375 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [3049] Speed: 93.620692 samples/sec accuracy=0.622889 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [3099] Speed: 93.664047 samples/sec accuracy=0.624597 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [3149] Speed: 93.502001 samples/sec accuracy=0.626250 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [3199] Speed: 93.435517 samples/sec accuracy=0.627383 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [3249] Speed: 93.589255 samples/sec accuracy=0.628846 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [3299] Speed: 93.771007 samples/sec accuracy=0.629943 lr=0.010000 INFO:ImageClassificationEstimator:Epoch[0] Batch [3349] Speed: 93.807438 samples/sec accuracy=0.631567 lr=0.010000 INFO:ImageClassificationEstimator:[Epoch 0] training: accuracy=0.632093 INFO:ImageClassificationEstimator:[Epoch 0] speed: 94 samples/sec time cost: 594.130483 INFO:ImageClassificationEstimator:[Epoch 0] validation: top1=0.904500 top5=0.997333 INFO:ImageClassificationEstimator:[Epoch 0] Current best top-1: 0.904500 vs previous 0.000000, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/3d06fc69/.trial_0/best_checkpoint.pkl INFO:ImageClassificationEstimator:Applying the state from the best checkpoint... INFO:gluoncv.auto.tasks.image_classification:Finished, total runtime is 607.63 s INFO:gluoncv.auto.tasks.image_classification:{ 'best_config': { 'batch_size': 16, 'custom_net': MyCifarResNet( (features): HybridSequential( (0): Conv2D(None -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): HybridSequential( (0): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (1): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (2): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) ) (3): HybridSequential( (0): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(16 -> 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) (downsample): HybridSequential( (0): Conv2D(16 -> 32, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (1): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (2): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (3): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (4): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (5): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (6): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) (7): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) ) (4): HybridSequential( (0): CIFARBasicBlockV1( (body): HybridSequential( (0): Conv2D(32 -> 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) (2): Activation(relu) (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) (downsample): HybridSequential( (0): Conv2D(32 -> 64, kernel_size=(1, 1), stride=(2, 2), bias=False) (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None) ) ) ) (5): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_pool=True, pool_type=avg, layout=NCHW) ) (output): Dense(64 -> 10, linear) ), 'custom_optimizer': <__main__.Adam object at 0x7fdc0807d450>, 'dist_ip_addrs': None, 'early_stop_baseline': -inf, 'early_stop_max_value': inf, 'early_stop_patience': 10, 'epochs': 1, 'estimator': <class 'gluoncv.auto.estimators.image_classification.image_classification.ImageClassificationEstimator'>, 'final_fit': False, 'gpus': [0], 'log_dir': '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/3d06fc69', 'lr': 0.01, 'model': 'resnet50_v1b', 'ngpus_per_trial': 1, 'nthreads_per_trial': 128, 'num_trials': 1, 'num_workers': 8, 'scheduler': 'local', 'search_strategy': 'random', 'searcher': 'random', 'seed': 141, 'time_limits': 7200, 'wall_clock_tick': 1618181769.6101558}, 'total_time': 584.5839202404022, 'train_acc': 0.6320925925925925, 'valid_acc': 0.9045}
print(classifier.fit_summary())
{'train_acc': 0.6320925925925925, 'valid_acc': 0.9045, 'total_time': 584.5839202404022, 'best_config': {'model': 'resnet50_v1b', 'lr': 0.01, 'num_trials': 1, 'epochs': 1, 'batch_size': 16, 'nthreads_per_trial': 128, 'ngpus_per_trial': 1, 'time_limits': 7200, 'search_strategy': 'random', 'dist_ip_addrs': None, 'log_dir': '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/3d06fc69', 'searcher': 'random', 'scheduler': 'local', 'custom_net': MyCifarResNet(
(features): HybridSequential(
(0): Conv2D(None -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): HybridSequential(
(0): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(1): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(2): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
)
(3): HybridSequential(
(0): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(16 -> 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
(downsample): HybridSequential(
(0): Conv2D(16 -> 32, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(1): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(2): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(3): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(4): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(5): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(6): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(7): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
)
(4): HybridSequential(
(0): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
(downsample): HybridSequential(
(0): Conv2D(32 -> 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
)
(5): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_pool=True, pool_type=avg, layout=NCHW)
)
(output): Dense(64 -> 10, linear)
), 'custom_optimizer': <__main__.Adam object at 0x7fdc0807d450>, 'early_stop_patience': 10, 'early_stop_baseline': -inf, 'early_stop_max_value': inf, 'num_workers': 8, 'gpus': [0], 'seed': 141, 'final_fit': False, 'estimator': <class 'gluoncv.auto.estimators.image_classification.image_classification.ImageClassificationEstimator'>, 'wall_clock_tick': 1618181769.6101558}, 'fit_history': {'train_acc': 0.6320925925925925, 'valid_acc': 0.9045, 'total_time': 584.5839202404022, 'best_config': {'model': 'resnet50_v1b', 'lr': 0.01, 'num_trials': 1, 'epochs': 1, 'batch_size': 16, 'nthreads_per_trial': 128, 'ngpus_per_trial': 1, 'time_limits': 7200, 'search_strategy': 'random', 'dist_ip_addrs': None, 'log_dir': '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/3d06fc69', 'searcher': 'random', 'scheduler': 'local', 'custom_net': MyCifarResNet(
(features): HybridSequential(
(0): Conv2D(None -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): HybridSequential(
(0): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(1): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(2): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
)
(3): HybridSequential(
(0): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(16 -> 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
(downsample): HybridSequential(
(0): Conv2D(16 -> 32, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(1): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(2): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(3): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(4): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(5): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(6): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
(7): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
)
(4): HybridSequential(
(0): CIFARBasicBlockV1(
(body): HybridSequential(
(0): Conv2D(32 -> 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
(2): Activation(relu)
(3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
(downsample): HybridSequential(
(0): Conv2D(32 -> 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
)
)
)
(5): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_pool=True, pool_type=avg, layout=NCHW)
)
(output): Dense(64 -> 10, linear)
), 'custom_optimizer': <__main__.Adam object at 0x7fdc0807d450>, 'early_stop_patience': 10, 'early_stop_baseline': -inf, 'early_stop_max_value': inf, 'num_workers': 8, 'gpus': [0], 'seed': 141, 'final_fit': False, 'estimator': <class 'gluoncv.auto.estimators.image_classification.image_classification.ImageClassificationEstimator'>, 'wall_clock_tick': 1618181769.6101558}}}