Source code for autogluon.timeseries.metrics.quantile

from typing import Optional, Sequence

import numpy as np
import pandas as pd

from autogluon.timeseries.dataset.ts_dataframe import TimeSeriesDataFrame

from .abstract import TimeSeriesScorer
from .utils import in_sample_abs_seasonal_error


[docs] class WQL(TimeSeriesScorer): r"""Weighted quantile loss. Also known as weighted pinball loss. Defined as total quantile loss divided by the sum of absolute time series values in the forecast horizon. .. math:: \operatorname{WQL} = \frac{1}{\sum_{i=1}^{N} \sum_{t=T+1}^{T+H} |y_{i, t}|} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} \sum_{q} \rho_q(y_{i,t}, f^q_{i,t}) Properties: - scale-dependent (time series with large absolute value contribute more to the loss) - equivalent to WAPE if ``quantile_levels = [0.5]`` If `horizon_weight` is provided, both the errors and the target time series in the denominator will be re-weighted. References ---------- - `Forecasting: Principles and Practice <https://otexts.com/fpp3/distaccuracy.html#quantile-scores>`_ """ needs_quantile = True def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs, ) -> float: y_true, q_pred, quantile_levels = self._get_quantile_forecast_score_inputs(data_future, predictions, target) y_true = y_true.to_numpy()[:, None] # shape [N, 1] q_pred = q_pred.to_numpy() # shape [N, len(quantile_levels)] errors = ( np.abs((q_pred - y_true) * ((y_true <= q_pred) - quantile_levels)) .mean(axis=1) .reshape([-1, self.prediction_length]) ) if self.horizon_weight is not None: errors *= self.horizon_weight y_true = y_true.reshape([-1, self.prediction_length]) * self.horizon_weight return 2 * np.nansum(errors) / np.nansum(np.abs(y_true))
[docs] class SQL(TimeSeriesScorer): r"""Scaled quantile loss. Also known as scaled pinball loss. Normalizes the quantile loss for each time series by the historical seasonal error of this time series. .. math:: \operatorname{SQL} = \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N} \frac{1}{a_i} \sum_{t=T+1}^{T+H} \sum_{q} \rho_q(y_{i,t}, f^q_{i,t}) where :math:`a_i` is the historical absolute seasonal error defined as .. math:: a_i = \frac{1}{T-m} \sum_{t=m+1}^T |y_{i,t} - y_{i,t-m}| and :math:`m` is the seasonal period of the time series (``eval_metric_seasonal_period``). Properties: - scaled metric (normalizes the error for each time series by the scale of that time series) - undefined for constant time series - equivalent to MASE if ``quantile_levels = [0.5]`` References ---------- - `Forecasting: Principles and Practice <https://otexts.com/fpp3/distaccuracy.html#quantile-scores>`_ """ needs_quantile = True def __init__( self, prediction_length: int = 1, seasonal_period: Optional[int] = None, horizon_weight: Optional[Sequence[float]] = None, ): super().__init__( prediction_length=prediction_length, seasonal_period=seasonal_period, horizon_weight=horizon_weight ) self._past_abs_seasonal_error: Optional[pd.Series] = None def save_past_metrics( self, data_past: TimeSeriesDataFrame, target: str = "target", seasonal_period: int = 1, **kwargs ) -> None: self._past_abs_seasonal_error = in_sample_abs_seasonal_error( y_past=data_past[target], seasonal_period=seasonal_period ) def clear_past_metrics(self) -> None: self._past_abs_seasonal_error = None def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs, ) -> float: if self._past_abs_seasonal_error is None: raise AssertionError("Call `save_past_metrics` before `compute_metric`") y_true, q_pred, quantile_levels = self._get_quantile_forecast_score_inputs(data_future, predictions, target) q_pred = q_pred.to_numpy() y_true = y_true.to_numpy()[:, None] # shape [N, 1] errors = ( np.abs((q_pred - y_true) * ((y_true <= q_pred) - quantile_levels)) .mean(axis=1) .reshape([-1, self.prediction_length]) ) if self.horizon_weight is not None: errors *= self.horizon_weight return 2 * self._safemean(errors / self._past_abs_seasonal_error.to_numpy()[:, None])