Handling Class Imbalance with AutoMM - Focal Loss

Open In Colab Open In SageMaker Studio Lab

In this tutorial, we introduce how to use focal loss with the AutoMM package for balanced training. Focal loss is first introduced in this Paper and can be used for balancing hard/easy samples as well as un-even sample distribution among classes. This tutorial demonstrates how to use focal loss.

Create Dataset

We use the shopee dataset for demonstration in this tutorial. Shopee dataset contains 4 classes and has 200 samples each in the training set.

from autogluon.multimodal.utils.misc import shopee_dataset

download_dir = "./ag_automm_tutorial_imgcls_focalloss"
train_data, test_data = shopee_dataset(download_dir)
Downloading ./ag_automm_tutorial_imgcls_focalloss/file.zip from https://automl-mm-bench.s3.amazonaws.com/vision_datasets/shopee.zip...
  0%|          | 0.00/84.0M [00:00<?, ?iB/s]
  8%|▊         | 6.61M/84.0M [00:00<00:02, 37.9MiB/s]
 12%|█▏        | 10.4M/84.0M [00:00<00:02, 25.6MiB/s]
 19%|█▊        | 15.6M/84.0M [00:00<00:02, 33.7MiB/s]
 23%|██▎       | 19.5M/84.0M [00:00<00:01, 34.9MiB/s]
 30%|██▉       | 24.8M/84.0M [00:00<00:01, 40.4MiB/s]
 35%|███▍      | 29.2M/84.0M [00:00<00:01, 35.7MiB/s]
 40%|███▉      | 33.5M/84.0M [00:01<00:01, 31.6MiB/s]
 48%|████▊     | 40.2M/84.0M [00:01<00:01, 29.6MiB/s]
 52%|█████▏    | 43.3M/84.0M [00:01<00:01, 30.1MiB/s]
 60%|█████▉    | 50.3M/84.0M [00:01<00:01, 32.6MiB/s]
 70%|██████▉   | 58.7M/84.0M [00:01<00:00, 37.5MiB/s]
 78%|███████▊  | 65.3M/84.0M [00:01<00:00, 42.5MiB/s]
 83%|████████▎ | 69.8M/84.0M [00:01<00:00, 37.6MiB/s]
 88%|████████▊ | 74.3M/84.0M [00:02<00:00, 39.2MiB/s]
 93%|█████████▎| 78.4M/84.0M [00:02<00:00, 31.9MiB/s]
 98%|█████████▊| 82.1M/84.0M [00:02<00:00, 27.1MiB/s]
100%|██████████| 84.0M/84.0M [00:02<00:00, 31.8MiB/s]

For the purpose of demonstrating the effectiveness of Focal Loss on imbalanced training data, we artificially downsampled the shopee training data to form an imbalanced distribution.

import numpy as np
import pandas as pd

ds = 1

imbalanced_train_data = []
for lb in range(4):
    class_data = train_data[train_data.label == lb]
    sample_index = np.random.choice(np.arange(len(class_data)), size=int(len(class_data) * ds), replace=False)
    ds /= 3  # downsample 1/3 each time for each class
    imbalanced_train_data.append(class_data.iloc[sample_index])
imbalanced_train_data = pd.concat(imbalanced_train_data)
print(imbalanced_train_data)

weights = []
for lb in range(4):
    class_data = imbalanced_train_data[imbalanced_train_data.label == lb]
    weights.append(1 / (class_data.shape[0] / imbalanced_train_data.shape[0]))
    print(f"class {lb}: num samples {len(class_data)}")
weights = list(np.array(weights) / np.sum(weights))
print(weights)
                                                 image  label
56   /home/ci/autogluon/docs/tutorials/multimodal/a...      0
18   /home/ci/autogluon/docs/tutorials/multimodal/a...      0
83   /home/ci/autogluon/docs/tutorials/multimodal/a...      0
91   /home/ci/autogluon/docs/tutorials/multimodal/a...      0
141  /home/ci/autogluon/docs/tutorials/multimodal/a...      0
..                                                 ...    ...
623  /home/ci/autogluon/docs/tutorials/multimodal/a...      3
788  /home/ci/autogluon/docs/tutorials/multimodal/a...      3
658  /home/ci/autogluon/docs/tutorials/multimodal/a...      3
702  /home/ci/autogluon/docs/tutorials/multimodal/a...      3
676  /home/ci/autogluon/docs/tutorials/multimodal/a...      3

[295 rows x 2 columns]
class 0: num samples 200
class 1: num samples 66
class 2: num samples 22
class 3: num samples 7
[np.float64(0.0239850482815907), np.float64(0.07268196448966878), np.float64(0.21804589346900635), np.float64(0.6852870937597342)]

Create and train MultiModalPredictor

Train with Focal Loss

We specify the model to use focal loss by setting the "optim.loss_func" to "focal_loss". There are also three other optional parameters you can set.

optim.focal_loss.alpha - a list of floats which is the per-class loss weight that can be used to balance un-even sample distribution across classes. Note that the len of the list must match the total number of classes in the training dataset. A good way to compute alpha for each class is to use the inverse of its percentage number of samples.

optim.focal_loss.gamma - float which controls how much to focus on the hard samples. Larger value means more focus on the hard samples.

optim.focal_loss.reduction - how to aggregate the loss value. Can only take "mean" or "sum" for now.

import uuid
from autogluon.multimodal import MultiModalPredictor

model_path = f"./tmp/{uuid.uuid4().hex}-automm_shopee_focal"

predictor = MultiModalPredictor(label="label", problem_type="multiclass", path=model_path)

predictor.fit(
    hyperparameters={
        "model.mmdet_image.checkpoint_name": "swin_tiny_patch4_window7_224",
        "env.num_gpus": 1,
        "optim.loss_func": "focal_loss",
        "optim.focal_loss.alpha": weights,  # shopee dataset has 4 classes.
        "optim.focal_loss.gamma": 1.0,
        "optim.focal_loss.reduction": "sum",
        "optim.max_epochs": 10,
    },
    train_data=imbalanced_train_data,
) 

predictor.evaluate(test_data, metrics=["acc"])
=================== System Info ===================
AutoGluon Version:  1.3.1b20250509
Python Version:     3.11.9
Operating System:   Linux
Platform Machine:   x86_64
Platform Version:   #1 SMP Wed Mar 12 14:53:59 UTC 2025
CPU Count:          8
Pytorch Version:    2.6.0+cu124
CUDA Version:       12.4
Memory Avail:       28.40 GB / 30.95 GB (91.8%)
Disk Space Avail:   166.39 GB / 255.99 GB (65.0%)
===================================================

AutoMM starts to create your model. ✨✨✨

To track the learning progress, you can open a terminal and launch Tensorboard:
    ```shell
    # Assume you have installed tensorboard
    tensorboard --logdir /home/ci/autogluon/docs/tutorials/multimodal/advanced_topics/tmp/6176658ceffc4f59a78127852ce7cea7-automm_shopee_focal
    ```
Seed set to 0
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[4], line 8
      4 model_path = f"./tmp/{uuid.uuid4().hex}-automm_shopee_focal"
      6 predictor = MultiModalPredictor(label="label", problem_type="multiclass", path=model_path)
----> 8 predictor.fit(
      9     hyperparameters={
     10         "model.mmdet_image.checkpoint_name": "swin_tiny_patch4_window7_224",
     11         "env.num_gpus": 1,
     12         "optim.loss_func": "focal_loss",
     13         "optim.focal_loss.alpha": weights,  # shopee dataset has 4 classes.
     14         "optim.focal_loss.gamma": 1.0,
     15         "optim.focal_loss.reduction": "sum",
     16         "optim.max_epochs": 10,
     17     },
     18     train_data=imbalanced_train_data,
     19 ) 
     21 predictor.evaluate(test_data, metrics=["acc"])

File ~/autogluon/multimodal/src/autogluon/multimodal/predictor.py:540, in MultiModalPredictor.fit(self, train_data, presets, tuning_data, max_num_tuning_data, id_mappings, time_limit, save_path, hyperparameters, column_types, holdout_frac, teacher_predictor, seed, standalone, hyperparameter_tune_kwargs, clean_ckpts, predictions, labels, predictors)
    537     assert isinstance(predictors, list)
    538     learners = [ele if isinstance(ele, str) else ele._learner for ele in predictors]
--> 540 self._learner.fit(
    541     train_data=train_data,
    542     presets=presets,
    543     tuning_data=tuning_data,
    544     max_num_tuning_data=max_num_tuning_data,
    545     time_limit=time_limit,
    546     save_path=save_path,
    547     hyperparameters=hyperparameters,
    548     column_types=column_types,
    549     holdout_frac=holdout_frac,
    550     teacher_learner=teacher_learner,
    551     seed=seed,
    552     standalone=standalone,
    553     hyperparameter_tune_kwargs=hyperparameter_tune_kwargs,
    554     clean_ckpts=clean_ckpts,
    555     id_mappings=id_mappings,
    556     predictions=predictions,
    557     labels=labels,
    558     learners=learners,
    559 )
    561 return self

File ~/autogluon/multimodal/src/autogluon/multimodal/learners/base.py:665, in BaseLearner.fit(self, train_data, presets, tuning_data, time_limit, save_path, hyperparameters, column_types, holdout_frac, teacher_learner, seed, standalone, hyperparameter_tune_kwargs, clean_ckpts, **kwargs)
    658 self.fit_sanity_check()
    659 self.prepare_fit_args(
    660     time_limit=time_limit,
    661     seed=seed,
    662     standalone=standalone,
    663     clean_ckpts=clean_ckpts,
    664 )
--> 665 fit_returns = self.execute_fit()
    666 self.on_fit_end(
    667     training_start=training_start,
    668     strategy=fit_returns.get("strategy", None),
   (...)
    671     clean_ckpts=clean_ckpts,
    672 )
    674 return self

File ~/autogluon/multimodal/src/autogluon/multimodal/learners/base.py:577, in BaseLearner.execute_fit(self)
    575     return dict()
    576 else:
--> 577     attributes = self.fit_per_run(**self._fit_args)
    578     self.update_attributes(**attributes)  # only update attributes for non-HPO mode
    579     return attributes

File ~/autogluon/multimodal/src/autogluon/multimodal/learners/base.py:1292, in BaseLearner.fit_per_run(self, max_time, save_path, ckpt_path, resume, enable_progress_bar, seed, hyperparameters, advanced_hyperparameters, config, df_preprocessor, data_processors, model, standalone, clean_ckpts)
   1290 validation_metric, custom_metric_func = self.get_validation_metric_per_run()
   1291 mixup_active, mixup_func = self.get_mixup_func_per_run(config=config)
-> 1292 loss_func, aug_loss_func = self.get_loss_func_per_run(config=config, mixup_active=mixup_active)
   1293 model_postprocess_fn = self.get_model_postprocess_fn_per_run(loss_func=loss_func)
   1294 num_gpus, strategy = self.get_num_gpus_and_strategy_per_run(config=config)

File ~/autogluon/multimodal/src/autogluon/multimodal/learners/base.py:846, in BaseLearner.get_loss_func_per_run(self, config, mixup_active)
    845 def get_loss_func_per_run(self, config, mixup_active=None):
--> 846     loss_func = get_loss_func(
    847         problem_type=self._problem_type,
    848         mixup_active=mixup_active,
    849         loss_func_name=config.optim.loss_func,
    850         config=config.optim,
    851     )
    852     aug_loss_func = get_aug_loss_func(
    853         config=config.optim,
    854         problem_type=self._problem_type,
    855     )
    856     return loss_func, aug_loss_func

File ~/autogluon/multimodal/src/autogluon/multimodal/optim/losses/utils.py:63, in get_loss_func(problem_type, mixup_active, loss_func_name, config, **kwargs)
     61 else:
     62     if loss_func_name is not None and loss_func_name.lower() == "focal_loss":
---> 63         loss_func = FocalLoss(
     64             alpha=config.focal_loss.alpha,
     65             gamma=config.focal_loss.gamma,
     66             reduction=config.focal_loss.reduction,
     67         )
     68     else:
     69         loss_func = nn.CrossEntropyLoss(label_smoothing=config.label_smoothing)

File ~/autogluon/multimodal/src/autogluon/multimodal/optim/losses/focal_loss.py:49, in FocalLoss.__init__(self, alpha, gamma, reduction, eps)
     47         except:
     48             raise ValueError(f"{type(alpha)} {alpha} is not in a supported format.")
---> 49     alpha = torch.tensor(alpha)
     50 self.nll_loss = nn.NLLLoss(weight=alpha, reduction="none")

ValueError: too many dimensions 'str'

Train without Focal Loss

import uuid
from autogluon.multimodal import MultiModalPredictor

model_path = f"./tmp/{uuid.uuid4().hex}-automm_shopee_non_focal"

predictor2 = MultiModalPredictor(label="label", problem_type="multiclass", path=model_path)

predictor2.fit(
    hyperparameters={
        "model.mmdet_image.checkpoint_name": "swin_tiny_patch4_window7_224",
        "env.num_gpus": 1,
        "optim.max_epochs": 10,
    },
    train_data=imbalanced_train_data,
)

predictor2.evaluate(test_data, metrics=["acc"])

As we can see that the model with focal loss is able to achieve a much better performance compared to the model without focal loss. When your data is imbalanced, try out focal loss to see if it brings improvements to the performance!

Citations

@misc{https://doi.org/10.48550/arxiv.1708.02002,
  doi = {10.48550/ARXIV.1708.02002},
  
  url = {https://arxiv.org/abs/1708.02002},
  
  author = {Lin, Tsung-Yi and Goyal, Priya and Girshick, Ross and He, Kaiming and Dollár, Piotr},
  
  keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Focal Loss for Dense Object Detection},
  
  publisher = {arXiv},
  
  year = {2017},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}