from __future__ import annotations
import logging
import math
import os
import time
import pandas as pd
from autogluon.common.features.types import R_BOOL, R_CATEGORY, R_FLOAT, R_INT
from autogluon.common.utils.lite import disable_if_lite_mode
from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
from autogluon.common.utils.resource_utils import ResourceManager
from autogluon.common.utils.try_import import try_import_xgboost
from autogluon.core.constants import MULTICLASS, PROBLEM_TYPES_CLASSIFICATION, REGRESSION, SOFTCLASS
from autogluon.core.models import AbstractModel
from autogluon.core.models._utils import get_early_stopping_rounds
from . import xgboost_utils
from .hyperparameters.parameters import get_param_baseline
from .hyperparameters.searchspaces import get_default_searchspace
logger = logging.getLogger(__name__)
[docs]
class XGBoostModel(AbstractModel):
"""
XGBoost model: https://xgboost.readthedocs.io/en/latest/
Hyperparameter options: https://xgboost.readthedocs.io/en/latest/parameter.html
"""
ag_key = "XGB"
ag_name = "XGBoost"
ag_priority = 40
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ohe: bool = True
self._ohe_generator = None
self._xgb_model_type = None
def _set_default_params(self):
default_params = get_param_baseline(problem_type=self.problem_type, num_classes=self.num_classes)
for param, val in default_params.items():
self._set_default_param_value(param, val)
def _get_default_searchspace(self):
return get_default_searchspace(problem_type=self.problem_type, num_classes=self.num_classes)
def _get_default_auxiliary_params(self) -> dict:
default_auxiliary_params = super()._get_default_auxiliary_params()
extra_auxiliary_params = dict(
valid_raw_types=[R_BOOL, R_INT, R_FLOAT, R_CATEGORY],
)
default_auxiliary_params.update(extra_auxiliary_params)
return default_auxiliary_params
# Use specialized XGBoost metric if available (fast), otherwise use custom func generator
def get_eval_metric(self):
eval_metric = xgboost_utils.convert_ag_metric_to_xgbm(ag_metric_name=self.stopping_metric.name, problem_type=self.problem_type)
if eval_metric is None:
eval_metric = xgboost_utils.func_generator(metric=self.stopping_metric, problem_type=self.problem_type)
return eval_metric
def _preprocess(self, X, is_train=False, max_category_levels=None, **kwargs):
X = super()._preprocess(X=X, **kwargs)
if is_train:
if self._ohe:
self._ohe_generator = xgboost_utils.OheFeatureGenerator(max_levels=max_category_levels)
self._ohe_generator.fit(X)
if self._ohe:
X = self._ohe_generator.transform(X)
return X
def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=None, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs):
# TODO: utilize sample_weight_val in early-stopping if provided
start_time = time.time()
ag_params = self._get_ag_params()
params = self._get_model_params()
generate_curves = ag_params.get("generate_curves", False)
if generate_curves:
X_test = kwargs.get("X_test", None)
y_test = kwargs.get("y_test", None)
else:
X_test = None
y_test = None
if num_cpus:
params["n_jobs"] = num_cpus
max_category_levels = params.pop("proc.max_category_levels", 100)
enable_categorical = params.get("enable_categorical", False)
if enable_categorical:
"""Skip one-hot-encoding and pass categoricals directly to XGBoost"""
self._ohe = False
else:
"""One-hot-encode categorical features"""
self._ohe = True
if verbosity <= 2:
verbose = False
log_period = None
elif verbosity == 3:
verbose = True
log_period = 50
else:
verbose = True
log_period = 1
eval_set = {}
X = self.preprocess(X, is_train=True, max_category_levels=max_category_levels)
num_rows_train = X.shape[0]
# NOTE: xgb eval_metric param supports: default xgb metric(s), str or list(str) OR custom_metric generated by func_generator() in xgboost_utils
# xgb does not support list(custom_metrics). Instead, use the CustomMetricCallback defined in xgb callbacks file
if "eval_metric" not in params:
eval_metric = self.get_eval_metric()
if eval_metric is not None:
params["eval_metric"] = eval_metric
eval_metric_name = eval_metric.__name__ if not isinstance(eval_metric, str) else eval_metric
if X_val is None:
early_stopping_rounds = None
eval_set = None
else:
X_val = self.preprocess(X_val, is_train=False)
eval_set["val"] = (X_val, y_val)
early_stopping_rounds = ag_params.get("early_stop", "adaptive")
if isinstance(early_stopping_rounds, (str, tuple, list)):
early_stopping_rounds = self._get_early_stopping_rounds(num_rows_train=num_rows_train, strategy=early_stopping_rounds)
if generate_curves and eval_set is not None:
scorers = ag_params.get("curve_metrics", [self.eval_metric])
use_curve_metric_error = ag_params.get("use_error_for_curve_metrics", False)
metric_names = [scorer.name for scorer in scorers]
eval_set["train"] = (X, y)
if X_test is not None:
X_test = self.preprocess(X_test, is_train=False)
eval_set["test"] = (X_test, y_test)
if num_gpus != 0:
if "device" not in params:
# FIXME: figure out which GPUs are available to this model instead of hardcoding GPU 0.
# Need to update BaggedEnsembleModel
params["device"] = "cuda:0"
if "tree_method" not in params:
params["tree_method"] = "hist"
try_import_xgboost()
from xgboost.callback import EvaluationMonitor
from .callbacks import CustomMetricCallback, EarlyStoppingCustom
if eval_set is not None and "callbacks" not in params:
callbacks = []
if generate_curves:
callbacks.append(CustomMetricCallback(scorers=scorers, eval_sets=eval_set, problem_type=self.problem_type, use_error=use_curve_metric_error))
if log_period is not None:
callbacks.append(EvaluationMonitor(period=log_period))
callbacks.append(
EarlyStoppingCustom(
early_stopping_rounds,
start_time=start_time,
time_limit=time_limit,
verbose=verbose,
metric_name=eval_metric_name, # forces stopping_metric rather than arbitrary last metric
data_name="validation_0", # forces val dataset rather than arbitrary last dataset
)
)
params["callbacks"] = callbacks
if eval_set is not None:
# important that val dataset is listed first
# (since validation_0 is specified in EarlyStoppingCustom callback)
eval_set = [eval_set["val"]]
from xgboost import XGBClassifier, XGBRegressor
model_type = XGBClassifier if self.problem_type in PROBLEM_TYPES_CLASSIFICATION else XGBRegressor
self.model = model_type(**params)
import warnings
with warnings.catch_warnings():
# FIXME: v1.1: Upgrade XGBoost to 2.0.1+ to avoid deprecation warnings from Pandas 2.1+ during XGBoost fit.
warnings.simplefilter(action="ignore", category=FutureWarning)
self.model.fit(X=X, y=y, eval_set=eval_set, verbose=False, sample_weight=sample_weight)
if generate_curves:
def filter(d, keys):
# ensure only specified curve metrics are included
return {key: d[key] for key in keys if key in d}
eval_results = self.model.evals_result().copy()
del eval_results["validation_0"]
curves = {name: filter(metrics, metric_names) for name, metrics in eval_results.items()}
self.save_learning_curves(metrics=metric_names, curves=curves)
bst = self.model.get_booster()
# TODO: Investigate speed-ups from GPU inference
# bst.set_param({"predictor": "gpu_predictor"})
if eval_set is not None:
self.params_trained["n_estimators"] = bst.best_iteration + 1
# Don't save the callback or eval_metric objects
self.model.set_params(callbacks=None, eval_metric=None)
def _predict_proba(self, X, num_cpus=-1, **kwargs):
X = self.preprocess(X, **kwargs)
if self.problem_type in [MULTICLASS, SOFTCLASS]:
# Bug fix for "xgboost>=2,<2.0.3" : https://github.com/dmlc/xgboost/issues/9807
self.model.set_params(n_jobs=num_cpus, objective="multi:softprob")
else:
self.model.set_params(n_jobs=num_cpus)
if self.problem_type == REGRESSION:
return self.model.predict(X)
y_pred_proba = self.model.predict_proba(X)
return self._convert_proba_to_unified_form(y_pred_proba)
def _get_early_stopping_rounds(self, num_rows_train, strategy="auto"):
return get_early_stopping_rounds(num_rows_train=num_rows_train, strategy=strategy)
def _get_num_classes(self, y):
if self.problem_type == MULTICLASS:
if self.num_classes is not None:
num_classes = self.num_classes
else:
num_classes = 10 # Guess if not given, can do better by looking at y
elif self.problem_type == SOFTCLASS: # TODO: delete this elif if it's unnecessary.
num_classes = y.shape[1]
else:
num_classes = 1
return num_classes
def _ag_params(self) -> set:
return {"early_stop", "generate_curves", "curve_metrics", "use_error_for_curve_metrics"}
def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
hyperparameters = self._get_model_params()
return self.estimate_memory_usage_static(X=X, problem_type=self.problem_type, num_classes=self.num_classes, hyperparameters=hyperparameters, **kwargs)
@classmethod
def _estimate_memory_usage_static(
cls,
*,
X: pd.DataFrame,
hyperparameters: dict = None,
num_classes: int = 1,
**kwargs,
) -> int:
if hyperparameters is None:
hyperparameters = {}
num_classes = num_classes if num_classes else 1 # self.num_classes could be None after initialization if it's a regression problem
data_mem_usage = get_approximate_df_mem_usage(X).sum()
data_mem_usage_bytes = data_mem_usage * 7 + data_mem_usage / 4 * num_classes # TODO: Extremely crude approximation, can be vastly improved
max_bin = hyperparameters.get("max_bin", 256)
max_depth = hyperparameters.get("max_depth", 6)
max_leaves = hyperparameters.get("max_leaves", 0)
if max_leaves is None:
max_leaves = 0
if max_depth > 12 or max_depth == 0: # 0 = uncapped
max_depth = 12 # Try our best if the value is very large, only treat it as 12.
if max_leaves != 0: # if capped max_leaves
# make the effective max_depth for calculations be the lesser of the two constraints
max_depth = min(max_depth, math.ceil(math.log2(max_leaves)))
# Formula based on manual testing, aligns with LightGBM histogram sizes
# This approximation is less accurate than it is for LightGBM and CatBoost.
# Note that max_depth didn't appear to reduce memory usage below 6, and it was unclear if it increased memory usage above 6.
if max_depth < 7:
depth_modifier = math.pow(2, 6)
elif max_depth < 9:
depth_modifier = math.pow(2, max_depth)
else:
depth_modifier = math.pow(2, max_depth - 1)
histogram_mem_usage_bytes = 20 * depth_modifier * len(X.columns) * max_bin
histogram_mem_usage_bytes *= 1.2 # Add a 20% buffer
mem_size_per_estimator = num_classes * max_depth * 500 # very rough estimate
n_estimators = hyperparameters.get("n_estimators", 10000)
n_estimators_min = min(n_estimators, 1000)
mem_size_estimators = n_estimators_min * mem_size_per_estimator # memory estimate after fitting up to 1000 estimators
approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + mem_size_estimators
return approx_mem_size_req
def _validate_fit_memory_usage(self, mem_error_threshold: float = 1.0, mem_warning_threshold: float = 0.75, mem_size_threshold: int = 1e9, **kwargs):
return super()._validate_fit_memory_usage(
mem_error_threshold=mem_error_threshold, mem_warning_threshold=mem_warning_threshold, mem_size_threshold=mem_size_threshold, **kwargs
)
def get_minimum_resources(self, is_gpu_available=False):
minimum_resources = {
"num_cpus": 1,
}
if is_gpu_available:
minimum_resources["num_gpus"] = 0.5
return minimum_resources
@disable_if_lite_mode(ret=(1, 0))
def _get_default_resources(self):
# logical=False is faster in training
num_cpus = ResourceManager.get_cpu_count_psutil(logical=False)
num_gpus = 0
return num_cpus, num_gpus
def save(self, path: str = None, verbose=True) -> str:
_model = self.model
self.model = None
if _model is not None:
self._xgb_model_type = _model.__class__
path = super().save(path=path, verbose=verbose)
if _model is not None:
# Halves disk usage compared to .json / .pkl
_model.save_model(os.path.join(path, "xgb.ubj"))
self.model = _model
return path
@classmethod
def load(cls, path: str, reset_paths=True, verbose=True):
model = super().load(path=path, reset_paths=reset_paths, verbose=verbose)
if model._xgb_model_type is not None:
model.model = model._xgb_model_type()
# Much faster to load using .ubj than .json (10x+ speedup)
model.model.load_model(os.path.join(path, "xgb.ubj"))
model._xgb_model_type = None
return model
@classmethod
def supported_problem_types(cls) -> list[str] | None:
return ["binary", "multiclass", "regression", "softclass"]
@classmethod
def _class_tags(cls):
return {
"can_estimate_memory_usage_static": True,
"supports_learning_curves": True,
}
def _more_tags(self):
# `can_refit_full=True` because n_estimators is communicated at end of `_fit`:
# self.params_trained['n_estimators'] = bst.best_ntree_limit
return {"can_refit_full": True}