Source code for autogluon.tabular.models.lgb.lgb_model

from __future__ import annotations

import gc
import logging
import os
import re
import time
import warnings
from types import MappingProxyType

import numpy as np
import pandas as pd
from pandas import DataFrame, Series

from autogluon.common.features.types import R_BOOL, R_CATEGORY, R_FLOAT, R_INT
from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
from autogluon.common.utils.resource_utils import ResourceManager
from autogluon.common.utils.try_import import try_import_lightgbm
from autogluon.core.constants import BINARY, MULTICLASS, QUANTILE, REGRESSION, SOFTCLASS
from autogluon.core.models import AbstractModel
from autogluon.core.models._utils import get_early_stopping_rounds

from . import lgb_utils
from .hyperparameters.parameters import DEFAULT_NUM_BOOST_ROUND, get_lgb_objective, get_param_baseline
from .hyperparameters.searchspaces import get_default_searchspace
from .lgb_utils import construct_dataset, train_lgb_model

warnings.filterwarnings("ignore", category=UserWarning, message="Starting from version")  # lightGBM brew libomp warning
warnings.filterwarnings("ignore", category=FutureWarning, message="Dask dataframe query")  # lightGBM dask-expr warning
logger = logging.getLogger(__name__)


# TODO: Save dataset to binary and reload for HPO. This will avoid the memory spike overhead when training each model and instead it will only occur once upon saving the dataset.
[docs] class LGBModel(AbstractModel): """ LightGBM model: https://lightgbm.readthedocs.io/en/latest/ Hyperparameter options: https://lightgbm.readthedocs.io/en/latest/Parameters.html Extra hyperparameter options: ag.early_stop : int, specifies the early stopping rounds. Defaults to an adaptive strategy. Recommended to keep default. """ ag_key = "GBM" ag_name = "LightGBM" ag_priority = 90 ag_priority_by_problem_type = MappingProxyType({ SOFTCLASS: 100 }) def __init__(self, **kwargs): super().__init__(**kwargs) self._features_internal_map = None self._features_internal_list = None self._requires_remap = None def _set_default_params(self): default_params = get_param_baseline(problem_type=self.problem_type) for param, val in default_params.items(): self._set_default_param_value(param, val) def _get_default_searchspace(self): return get_default_searchspace(problem_type=self.problem_type) # Use specialized LightGBM metric if available (fast), otherwise use custom func generator def _get_stopping_metric_internal(self): stopping_metric = lgb_utils.convert_ag_metric_to_lgbm(ag_metric_name=self.stopping_metric.name, problem_type=self.problem_type) if stopping_metric is None: stopping_metric = lgb_utils.func_generator( metric=self.stopping_metric, is_higher_better=True, needs_pred_proba=not self.stopping_metric.needs_pred, problem_type=self.problem_type ) stopping_metric_name = self.stopping_metric.name else: stopping_metric_name = stopping_metric return stopping_metric, stopping_metric_name def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int: hyperparameters = self._get_model_params() return self.estimate_memory_usage_static(X=X, problem_type=self.problem_type, num_classes=self.num_classes, hyperparameters=hyperparameters, **kwargs) # FIXME: Don't use `hyperparameters.get("max_bins", 255)`, instead get the defaults all at once! @classmethod def _estimate_memory_usage_static( cls, *, X: DataFrame, hyperparameters: dict = None, num_classes: int = 1, **kwargs, ) -> int: """ Returns the expected peak memory usage in bytes of the LightGBM model during fit. The memory usage of LightGBM is primarily made up of three sources: 1. The size of the data 2. The size of the histogram cache Scales roughly by 5100*num_features*num_leaves bytes For 10000 features and 128 num_leaves, the histogram would be 6.5 GB. 3. The size of the model Scales linearly with the number of estimators, number of classes, and number of leaves. Memory usage peaks during model saving, with the peak consuming approximately 2-4x the size of the model in memory. """ if hyperparameters is None: hyperparameters = {} num_classes = num_classes if num_classes else 1 # num_classes could be None after initialization if it's a regression problem data_mem_usage = get_approximate_df_mem_usage(X).sum() data_mem_usage_bytes = data_mem_usage * 5 + data_mem_usage / 4 * num_classes # TODO: Extremely crude approximation, can be vastly improved n_trees_per_estimator = num_classes if num_classes > 2 else 1 max_bins = hyperparameters.get("max_bins", 255) num_leaves = hyperparameters.get("num_leaves", 31) # Memory usage of histogram based on https://github.com/microsoft/LightGBM/issues/562#issuecomment-304524592 histogram_mem_usage_bytes = 20 * max_bins * len(X.columns) * num_leaves histogram_mem_usage_bytes_max = hyperparameters.get("histogram_pool_size", None) if histogram_mem_usage_bytes_max is not None: histogram_mem_usage_bytes_max *= 1e6 # Convert megabytes to bytes, `histogram_pool_size` is in MB. if histogram_mem_usage_bytes > histogram_mem_usage_bytes_max: histogram_mem_usage_bytes = histogram_mem_usage_bytes_max histogram_mem_usage_bytes *= 1.2 # Add a 20% buffer mem_size_per_estimator = n_trees_per_estimator * num_leaves * 100 # very rough estimate n_estimators = hyperparameters.get("num_boost_round", DEFAULT_NUM_BOOST_ROUND) n_estimators_min = min(n_estimators, 1000) mem_size_estimators = n_estimators_min * mem_size_per_estimator # memory estimate after fitting up to 1000 estimators approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + mem_size_estimators return approx_mem_size_req def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=0, sample_weight=None, sample_weight_val=None, verbosity=2, **kwargs): try_import_lightgbm() # raise helpful error message if LightGBM isn't installed start_time = time.time() ag_params = self._get_ag_params() params = self._get_model_params() generate_curves = ag_params.get("generate_curves", False) if generate_curves: X_test = kwargs.get("X_test", None) y_test = kwargs.get("y_test", None) else: X_test = None y_test = None if verbosity <= 1: log_period = False elif verbosity == 2: log_period = 1000 elif verbosity == 3: log_period = 50 else: log_period = 1 stopping_metric, stopping_metric_name = self._get_stopping_metric_internal() num_boost_round = params.pop("num_boost_round", DEFAULT_NUM_BOOST_ROUND) dart_retrain = params.pop("dart_retrain", False) # Whether to retrain the model to get optimal iteration if model is trained in 'dart' mode. if num_gpus != 0: if "device" not in params: # TODO: lightgbm must have a special install to support GPU: https://github.com/Microsoft/LightGBM/tree/master/python-package#build-gpu-version # Before enabling GPU, we should add code to detect that GPU-enabled version is installed and that a valid GPU exists. # GPU training heavily alters accuracy, often in a negative manner. We will have to be careful about when to use GPU. params["device"] = "gpu" logger.log(20, f"\tTraining {self.name} with GPU, note that this may negatively impact model quality compared to CPU training.") logger.log(15, f"\tFitting {num_boost_round} rounds... Hyperparameters: {params}") if "num_threads" not in params: params["num_threads"] = num_cpus if "objective" not in params: params["objective"] = get_lgb_objective(problem_type=self.problem_type) if self.problem_type in [MULTICLASS, SOFTCLASS] and "num_classes" not in params: params["num_classes"] = self.num_classes if "verbose" not in params: params["verbose"] = -1 num_rows_train = len(X) dataset_train, dataset_val, dataset_test = self.generate_datasets( X=X, y=y, params=params, X_val=X_val, y_val=y_val, X_test=X_test, y_test=y_test, sample_weight=sample_weight, sample_weight_val=sample_weight_val ) gc.collect() callbacks = [] valid_names = [] valid_sets = [] if dataset_val is not None: from .callbacks import early_stopping_custom # TODO: Better solution: Track trend to early stop when score is far worse than best score, or score is trending worse over time early_stopping_rounds = ag_params.get("early_stop", "adaptive") if isinstance(early_stopping_rounds, (str, tuple, list)): early_stopping_rounds = self._get_early_stopping_rounds(num_rows_train=num_rows_train, strategy=early_stopping_rounds) if early_stopping_rounds is None: early_stopping_rounds = 999999 reporter = kwargs.get("reporter", None) train_loss_name = self._get_train_loss_name() if reporter is not None else None if train_loss_name is not None: if "metric" not in params or params["metric"] == "": params["metric"] = train_loss_name elif train_loss_name not in params["metric"]: params["metric"] = f'{params["metric"]},{train_loss_name}' # early stopping callback will be added later by QuantileBooster if problem_type==QUANTILE early_stopping_callback_kwargs = dict( stopping_rounds=early_stopping_rounds, metrics_to_use=[("valid_set", stopping_metric_name)], max_diff=None, start_time=start_time, time_limit=time_limit, ignore_dart_warning=True, verbose=False, manual_stop_file=False, reporter=reporter, train_loss_name=train_loss_name, ) callbacks += [ # Note: Don't use self.params_aux['max_memory_usage_ratio'] here as LightGBM handles memory per iteration optimally. # TODO: Consider using when ratio < 1. early_stopping_custom(**early_stopping_callback_kwargs) ] valid_names = ["valid_set"] + valid_names valid_sets = [dataset_val] + valid_sets else: early_stopping_callback_kwargs = None from lightgbm.callback import log_evaluation, record_evaluation if log_period is not None: callbacks.append(log_evaluation(period=log_period)) seed_val = params.pop("seed_value", 0) train_params = { "params": params, "train_set": dataset_train, "num_boost_round": num_boost_round, "valid_names": valid_names, "valid_sets": valid_sets, "callbacks": callbacks, "keep_training_booster": generate_curves, } if generate_curves: scorers = ag_params.get("curve_metrics", [self.eval_metric]) use_curve_metric_error = ag_params.get("use_error_for_curve_metrics", False) metric_names = [scorer.name for scorer in scorers] if stopping_metric_name in metric_names: idx = metric_names.index(stopping_metric_name) scorers[idx].name = f"_{stopping_metric_name}" metric_names[idx] = scorers[idx].name custom_metrics = [ lgb_utils.func_generator( metric=scorer, is_higher_better=scorer.greater_is_better_internal, needs_pred_proba=not scorer.needs_pred, problem_type=self.problem_type, error=use_curve_metric_error, ) for scorer in scorers ] eval_results = {} train_params["callbacks"].append(record_evaluation(eval_results)) train_params["feval"] = custom_metrics if dataset_test is not None: train_params["valid_names"] = ["train_set", "test_set"] + train_params["valid_names"] train_params["valid_sets"] = [dataset_train, dataset_test] + train_params["valid_sets"] else: train_params["valid_names"] = ["train_set"] + train_params["valid_names"] train_params["valid_sets"] = [dataset_train] + train_params["valid_sets"] # NOTE: lgb stops based on first metric if more than one if not isinstance(stopping_metric, str): if generate_curves: train_params["feval"].insert(0, stopping_metric) else: train_params["feval"] = stopping_metric elif isinstance(stopping_metric, str): if "metric" not in train_params["params"] or train_params["params"]["metric"] == "": train_params["params"]["metric"] = stopping_metric elif stopping_metric not in train_params["params"]["metric"]: train_params["params"]["metric"] = f'{stopping_metric},{train_params["params"]["metric"]}' if self.problem_type == SOFTCLASS: train_params["fobj"] = lgb_utils.softclass_lgbobj elif self.problem_type == QUANTILE: train_params["params"]["quantile_levels"] = self.quantile_levels if seed_val is not None: train_params["params"]["seed"] = seed_val # Train LightGBM model: # Note that self.model contains a <class 'lightgbm.basic.Booster'> not a LightBGMClassifier or LightGBMRegressor object from lightgbm.basic import LightGBMError with warnings.catch_warnings(): # Filter harmless warnings introduced in lightgbm 3.0, future versions plan to remove: https://github.com/microsoft/LightGBM/issues/3379 warnings.filterwarnings("ignore", message="Overriding the parameters from Reference Dataset.") warnings.filterwarnings("ignore", message="categorical_column in param dict is overridden.") try: self.model = train_lgb_model(early_stopping_callback_kwargs=early_stopping_callback_kwargs, **train_params) except LightGBMError: if train_params["params"].get("device", "cpu") != "gpu": raise else: logger.warning( "Warning: GPU mode might not be installed for LightGBM, GPU training raised an exception. Falling back to CPU training..." "Refer to LightGBM GPU documentation: https://github.com/Microsoft/LightGBM/tree/master/python-package#build-gpu-version" "One possible method is:" "\tpip uninstall lightgbm -y" "\tpip install lightgbm --install-option=--gpu" ) train_params["params"]["device"] = "cpu" self.model = train_lgb_model(early_stopping_callback_kwargs=early_stopping_callback_kwargs, **train_params) retrain = False if train_params["params"].get("boosting_type", "") == "dart": if dataset_val is not None and dart_retrain and (self.model.best_iteration != num_boost_round): retrain = True if time_limit is not None: time_left = time_limit + start_time - time.time() if time_left < 0.5 * time_limit: retrain = False if retrain: logger.log(15, f"Retraining LGB model to optimal iterations ('dart' mode).") train_params.pop("callbacks", None) train_params.pop("valid_sets", None) train_params.pop("valid_names", None) train_params["num_boost_round"] = self.model.best_iteration self.model = train_lgb_model(**train_params) else: logger.log(15, f"Not enough time to retrain LGB model ('dart' mode)...") if generate_curves: def og_name(key): if key == f"_{stopping_metric_name}": return stopping_metric_name return key def filter(d, keys): return {og_name(key): d[key] for key in keys if key in d} curves = {"train": filter(eval_results["train_set"], metric_names)} if X_val is not None: curves["val"] = filter(eval_results["valid_set"], metric_names) if X_test is not None: curves["test"] = filter(eval_results["test_set"], metric_names) if f"_{stopping_metric_name}" in metric_names: idx = metric_names.index(f"_{stopping_metric_name}") metric_names[idx] = stopping_metric_name self.save_learning_curves(metrics=metric_names, curves=curves) if dataset_val is not None and not retrain: self.params_trained["num_boost_round"] = self.model.best_iteration else: self.params_trained["num_boost_round"] = self.model.current_iteration() def _predict_proba(self, X, num_cpus=0, **kwargs) -> np.ndarray: X = self.preprocess(X, **kwargs) y_pred_proba = self.model.predict(X, num_threads=num_cpus) if self.problem_type == QUANTILE: # y_pred_proba is a pd.DataFrame, need to convert y_pred_proba = y_pred_proba.to_numpy() if self.problem_type in [REGRESSION, QUANTILE, MULTICLASS]: return y_pred_proba elif self.problem_type == BINARY: if len(y_pred_proba.shape) == 1: return y_pred_proba elif y_pred_proba.shape[1] > 1: return y_pred_proba[:, 1] else: return y_pred_proba elif self.problem_type == SOFTCLASS: # apply softmax y_pred_proba = np.exp(y_pred_proba) y_pred_proba = np.multiply(y_pred_proba, 1 / np.sum(y_pred_proba, axis=1)[:, np.newaxis]) return y_pred_proba else: if len(y_pred_proba.shape) == 1: return y_pred_proba elif y_pred_proba.shape[1] > 2: # Should this ever happen? return y_pred_proba else: # Should this ever happen? return y_pred_proba[:, 1] def _preprocess_nonadaptive(self, X, is_train=False, **kwargs): X = super()._preprocess_nonadaptive(X=X, **kwargs) if is_train: self._requires_remap = False for column in X.columns: if isinstance(column, str): new_column = re.sub(r'[",:{}[\]]', "", column) if new_column != column: self._features_internal_map = {feature: i for i, feature in enumerate(list(X.columns))} self._requires_remap = True break if self._requires_remap: self._features_internal_list = np.array([self._features_internal_map[feature] for feature in list(X.columns)]) else: self._features_internal_list = self._features_internal if self._requires_remap: X_new = X.copy(deep=False) X_new.columns = self._features_internal_list return X_new else: return X def generate_datasets( self, X: DataFrame, y: Series, params, X_val=None, y_val=None, X_test=None, y_test=None, sample_weight=None, sample_weight_val=None, sample_weight_test=None, save=False, ): lgb_dataset_params_keys = ["two_round"] # Keys that are specific to lightGBM Dataset object construction. data_params = {key: params[key] for key in lgb_dataset_params_keys if key in params}.copy() X = self.preprocess(X, is_train=True) if X_val is not None: X_val = self.preprocess(X_val) if X_test is not None: X_test = self.preprocess(X_test) # TODO: Try creating multiple Datasets for subsets of features, then combining with Dataset.add_features_from(), this might avoid memory spike y_og = None y_val_og = None y_test_og = None if self.problem_type == SOFTCLASS: y_og = np.array(y) y = None if X_val is not None: y_val_og = np.array(y_val) y_val = None if X_test is not None: y_test_og = np.array(y_test) y_test = None # X, W_train = self.convert_to_weight(X=X) dataset_train = construct_dataset( x=X, y=y, location=os.path.join("self.path", "datasets", "train"), params=data_params, save=save, weight=sample_weight ) # dataset_train = construct_dataset_lowest_memory(X=X, y=y, location=self.path + 'datasets/train', params=data_params) if X_val is not None: # X_val, W_val = self.convert_to_weight(X=X_val) dataset_val = construct_dataset( x=X_val, y=y_val, location=os.path.join(self.path, "datasets", "val"), reference=dataset_train, params=data_params, save=save, weight=sample_weight_val, ) # dataset_val = construct_dataset_lowest_memory(X=X_val, y=y_val, location=self.path + 'datasets/val', reference=dataset_train, params=data_params) else: dataset_val = None if X_test is not None: dataset_test = construct_dataset( x=X_test, y=y_test, location=os.path.join(self.path, "datasets", "test"), reference=dataset_train, params=data_params, save=save, weight=sample_weight_test, ) else: dataset_test = None if self.problem_type == SOFTCLASS: if y_og is not None: dataset_train.softlabels = y_og if y_val_og is not None: dataset_val.softlabels = y_val_og if y_test_og is not None: dataset_test.softlabels = y_test_og return dataset_train, dataset_val, dataset_test def _get_train_loss_name(self): if self.problem_type == BINARY: train_loss_name = "binary_logloss" elif self.problem_type == MULTICLASS: train_loss_name = "multi_logloss" elif self.problem_type == REGRESSION: train_loss_name = "l2" else: raise ValueError(f"unknown problem_type for LGBModel: {self.problem_type}") return train_loss_name def _get_early_stopping_rounds(self, num_rows_train, strategy="auto"): return get_early_stopping_rounds(num_rows_train=num_rows_train, strategy=strategy) def _get_default_auxiliary_params(self) -> dict: default_auxiliary_params = super()._get_default_auxiliary_params() extra_auxiliary_params = dict( valid_raw_types=[R_BOOL, R_INT, R_FLOAT, R_CATEGORY], ) default_auxiliary_params.update(extra_auxiliary_params) return default_auxiliary_params def _is_gpu_lgbm_installed(self): # Taken from https://github.com/microsoft/LightGBM/issues/3939 try_import_lightgbm() import lightgbm try: data = np.random.rand(50, 2) label = np.random.randint(2, size=50) train_data = lightgbm.Dataset(data, label=label) params = {"device": "gpu"} gbm = lightgbm.train(params, train_set=train_data, verbose=-1) return True except Exception as e: return False def get_minimum_resources(self, is_gpu_available=False): minimum_resources = { "num_cpus": 1, } if is_gpu_available and self._is_gpu_lgbm_installed(): minimum_resources["num_gpus"] = 0.5 return minimum_resources def _get_default_resources(self): # logical=False is faster in training num_cpus = ResourceManager.get_cpu_count_psutil(logical=False) num_gpus = 0 return num_cpus, num_gpus @classmethod def supported_problem_types(cls) -> list[str] | None: return ["binary", "multiclass", "regression", "quantile", "softclass"] @property def _features(self): return self._features_internal_list def _ag_params(self) -> set: return {"early_stop", "generate_curves", "curve_metrics", "use_error_for_curve_metrics"} @classmethod def _class_tags(cls): return { "can_estimate_memory_usage_static": True, "supports_learning_curves": True, } def _more_tags(self): # `can_refit_full=True` because num_boost_round is communicated at end of `_fit` return {"can_refit_full": True}