Source code for autogluon.features.generators.datetime
import logging
import pandas as pd
from pandas import DataFrame
from autogluon.common.features.types import R_DATETIME, S_DATETIME_AS_OBJECT
from .abstract import AbstractFeatureGenerator
logger = logging.getLogger(__name__)
[docs]class DatetimeFeatureGenerator(AbstractFeatureGenerator):
"""Transforms datetime features into numeric features.
Parameters
----------
features : list, optional
A list of datetime features to parse out of dates.
For a full list of options see the methods inside pandas.Series.dt at https://pandas.pydata.org/docs/reference/api/pandas.Series.html
"""
def __init__(self,
features: list = ['year', 'month', 'day', 'dayofweek'],
**kwargs
):
super().__init__(**kwargs)
self.features = features
def _fit_transform(self, X: DataFrame, **kwargs) -> (DataFrame, dict):
self._fillna_map = self._compute_fillna_map(X)
X_out = self._transform(X)
type_family_groups_special = dict(
datetime_as_int=list(X_out.columns)
)
return X_out, type_family_groups_special
def _transform(self, X: DataFrame) -> DataFrame:
return self._generate_features_datetime(X)
@staticmethod
def get_default_infer_features_in_args() -> dict:
return dict(required_raw_special_pairs=[
(R_DATETIME, None),
(None, [S_DATETIME_AS_OBJECT])
])
def _compute_fillna_map(self, X: DataFrame):
fillna_map = dict()
for datetime_feature in self.features_in:
datetime_series = pd.to_datetime(X[datetime_feature], errors='coerce')
# Best guess is currently to fill by the mean.
fillna_datetime = datetime_series.mean()
fillna_map[datetime_feature] = fillna_datetime
return fillna_map
# TODO: Improve handling of missing datetimes
def _generate_features_datetime(self, X: DataFrame) -> DataFrame:
X_datetime = DataFrame(index=X.index)
for datetime_feature in self.features_in:
# TODO: Be aware: When converted to float32 by downstream models, the seconds value will be up to 3 seconds off the true time due to rounding error. If seconds matter, find a separate way to generate (Possibly subtract smallest datetime from all values).
# TODO: could also return an extra boolean column is_nan which could provide predictive signal.
X_datetime[datetime_feature] = pd.to_datetime(X[datetime_feature], errors='coerce').fillna(self._fillna_map[datetime_feature])
# X_datetime[datetime_feature] = pd.to_timedelta(X_datetime[datetime_feature]).dt.total_seconds()
# Parse the date into lots of derived fields.
# Most of the pandas Series.dt properties are here, a few are omitted (e.g. is_month_start) if they can be inferred
# from other features.
for feature in self.features:
X_datetime[datetime_feature + '.' + feature] = getattr(X_datetime[datetime_feature].dt, feature).astype(int)
X_datetime[datetime_feature] = pd.to_numeric(X_datetime[datetime_feature])
return X_datetime
def _remove_features_in(self, features: list):
super()._remove_features_in(features)
if self._fillna_map:
for feature in features:
if feature in self._fillna_map:
self._fillna_map.pop(feature)