TimeSeriesDataFrame.from_iterable_dataset¶
- classmethod TimeSeriesDataFrame.from_iterable_dataset(iterable_dataset: Iterable, num_cpus: int = -1) TimeSeriesDataFrame [source]¶
Construct a
TimeSeriesDataFrame
from an Iterable of dictionaries each of which represent a single time series.This function also offers compatibility with GluonTS ListDataset format.
- Parameters:
iterable_dataset (Iterable) –
An iterator over dictionaries, each with a
target
field specifying the value of the (univariate) time series, and astart
field with the starting time as a pandas Period . Example:iterable_dataset = [ {"target": [0, 1, 2], "start": pd.Period("01-01-2019", freq='D')}, {"target": [3, 4, 5], "start": pd.Period("01-01-2019", freq='D')}, {"target": [6, 7, 8], "start": pd.Period("01-01-2019", freq='D')} ]
num_cpus (int, default = -1) – Number of CPU cores used to process the iterable dataset in parallel. Set to -1 to use all cores.
- Returns:
ts_df – A data frame in TimeSeriesDataFrame format.
- Return type: