Source code for autogluon.timeseries.metrics.point

import logging
from typing import Optional

import numpy as np
import pandas as pd

from autogluon.timeseries import TimeSeriesDataFrame
from autogluon.timeseries.dataset.ts_dataframe import ITEMID

from .abstract import TimeSeriesScorer
from .utils import _in_sample_abs_seasonal_error, _in_sample_squared_seasonal_error

logger = logging.getLogger(__name__)


[docs] class RMSE(TimeSeriesScorer): r"""Root mean squared error. .. math:: \operatorname{RMSE} = \sqrt{\frac{1}{N} \frac{1}{H} \sum_{i=1}^{N}\sum_{t=T+1}^{T+H} (y_{i,t} - f_{i,t})^2} Properties: - scale-dependent (time series with large absolute value contribute more to the loss) - heavily penalizes models that cannot quickly adapt to abrupt changes in the time series - sensitive to outliers - prefers models that accurately estimate the mean (expected value) References ---------- - `Wikipedia <https://en.wikipedia.org/wiki/Root-mean-square_deviation>`_ - `Forecasting: Principles and Practice <https://otexts.com/fpp3/accuracy.html#scale-dependent-errors>`_ """ equivalent_tabular_regression_metric = "root_mean_squared_error" def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, y_pred = self._get_point_forecast_score_inputs(data_future, predictions, target=target) return np.sqrt(self._safemean((y_true - y_pred) ** 2))
[docs] class MSE(TimeSeriesScorer): r"""Mean squared error. Using this metric will lead to forecast of the mean. .. math:: \operatorname{MSE} = \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N}\sum_{t=T+1}^{T+H} (y_{i,t} - f_{i,t})^2 Properties: - scale-dependent (time series with large absolute value contribute more to the loss) - heavily penalizes models that cannot quickly adapt to abrupt changes in the time series - sensitive to outliers - prefers models that accurately estimate the mean (expected value) References ---------- - `Wikipedia <https://en.wikipedia.org/wiki/Mean_squared_error>`_ """ equivalent_tabular_regression_metric = "mean_squared_error" def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, y_pred = self._get_point_forecast_score_inputs(data_future, predictions, target=target) return self._safemean((y_true - y_pred) ** 2)
[docs] class MAE(TimeSeriesScorer): r"""Mean absolute error. .. math:: \operatorname{MAE} = \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N}\sum_{t=T+1}^{T+H} |y_{i,t} - f_{i,t}| Properties: - scale-dependent (time series with large absolute value contribute more to the loss) - not sensitive to outliers - prefers models that accurately estimate the median References ---------- - `Wikipedia <https://en.wikipedia.org/wiki/Mean_absolute_percentage_error#WMAPE>`_ - `Forecasting: Principles and Practice <https://otexts.com/fpp3/accuracy.html#scale-dependent-errors>`_ """ optimized_by_median = True equivalent_tabular_regression_metric = "mean_absolute_error" def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, y_pred = self._get_point_forecast_score_inputs(data_future, predictions, target=target) return self._safemean((y_true - y_pred).abs())
[docs] class WAPE(TimeSeriesScorer): r"""Weighted absolute percentage error. Defined as sum of absolute errors divided by the sum of absolute time series values in the forecast horizon. .. math:: \operatorname{WAPE} = \frac{1}{\sum_{i=1}^{N} \sum_{t=T+1}^{T+H} |y_{i, t}|} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} |y_{i,t} - f_{i,t}| Properties: - scale-dependent (time series with large absolute value contribute more to the loss) - not sensitive to outliers - prefers models that accurately estimate the median References ---------- - `Wikipedia <https://en.wikipedia.org/wiki/Mean_absolute_percentage_error#WMAPE>`_ """ optimized_by_median = True equivalent_tabular_regression_metric = "mean_absolute_error" def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, y_pred = self._get_point_forecast_score_inputs(data_future, predictions, target=target) return (y_true - y_pred).abs().sum() / y_true.abs().sum()
[docs] class SMAPE(TimeSeriesScorer): r"""Symmetric mean absolute percentage error. .. math:: \operatorname{SMAPE} = 2 \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} \frac{ |y_{i,t} - f_{i,t}|}{|y_{i,t}| + |f_{i,t}|} Properties: - should only be used if all time series have positive values - poorly suited for sparse & intermittent time series that contain zero values - penalizes overprediction more heavily than underprediction References ---------- - `Wikipedia <https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error>`_ - `Forecasting: Principles and Practice <https://otexts.com/fpp3/accuracy.html#percentage-errors>`_ """ optimized_by_median = True equivalent_tabular_regression_metric = "symmetric_mean_absolute_percentage_error" def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, y_pred = self._get_point_forecast_score_inputs(data_future, predictions, target=target) return self._safemean(2 * ((y_true - y_pred).abs() / (y_true.abs() + y_pred.abs())))
[docs] class MAPE(TimeSeriesScorer): r"""Mean absolute percentage error. .. math:: \operatorname{MAPE} = \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N} \sum_{t=T+1}^{T+H} \frac{ |y_{i,t} - f_{i,t}|}{|y_{i,t}|} Properties: - should only be used if all time series have positive values - undefined for time series that contain zero values - penalizes overprediction more heavily than underprediction References ---------- - `Wikipedia <https://en.wikipedia.org/wiki/Mean_absolute_percentage_error>`_ - `Forecasting: Principles and Practice <https://otexts.com/fpp3/accuracy.html#percentage-errors>`_ """ optimized_by_median = True equivalent_tabular_regression_metric = "mean_absolute_percentage_error" def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, y_pred = self._get_point_forecast_score_inputs(data_future, predictions, target=target) return self._safemean((y_true - y_pred).abs() / y_true.abs())
[docs] class MASE(TimeSeriesScorer): r"""Mean absolute scaled error. Normalizes the absolute error for each time series by the historic seasonal error of this time series. .. math:: \operatorname{MASE} = \frac{1}{N} \frac{1}{H} \sum_{i=1}^{N} \frac{1}{a_i} \sum_{t=T+1}^{T+H} |y_{i,t} - f_{i,t}| where :math:`a_i` is the historic absolute seasonal error defined as .. math:: a_i = \frac{1}{T-m} \sum_{t=m+1}^T |y_{i,t} - y_{i,t-m}| and :math:`m` is the seasonal period of the time series (``eval_metric_seasonal_period``). Properties: - scaled metric (normalizes the error for each time series by the scale of that time series) - undefined for constant time series - not sensitive to outliers - prefers models that accurately estimate the median References ---------- - `Wikipedia <https://en.wikipedia.org/wiki/Mean_absolute_scaled_error>`_ - `Forecasting: Principles and Practice <https://otexts.com/fpp3/accuracy.html#scaled-errors>`_ """ optimized_by_median = True equivalent_tabular_regression_metric = "mean_absolute_error" def __init__(self): self._past_abs_seasonal_error: Optional[pd.Series] = None def save_past_metrics( self, data_past: TimeSeriesDataFrame, target: str = "target", seasonal_period: int = 1, **kwargs ) -> None: self._past_abs_seasonal_error = _in_sample_abs_seasonal_error( y_past=data_past[target], seasonal_period=seasonal_period ) def clear_past_metrics(self) -> None: self._past_abs_seasonal_error = None def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, y_pred = self._get_point_forecast_score_inputs(data_future, predictions, target=target) if self._past_abs_seasonal_error is None: raise AssertionError("Call `save_past_metrics` before `compute_metric`") mae_per_item = (y_true - y_pred).abs().groupby(level=ITEMID, sort=False).mean() return self._safemean(mae_per_item / self._past_abs_seasonal_error)
[docs] class RMSSE(TimeSeriesScorer): r"""Root mean squared scaled error. Normalizes the absolute error for each time series by the historic seasonal error of this time series. .. math:: \operatorname{RMSSE} = \sqrt{\frac{1}{N} \frac{1}{H} \sum_{i=1}^{N} \frac{1}{s_i} \sum_{t=T+1}^{T+H} (y_{i,t} - f_{i,t})^2} where :math:`s_i` is the historic squared seasonal error defined as .. math:: s_i = \frac{1}{T-m} \sum_{t=m+1}^T (y_{i,t} - y_{i,t-m})^2 and :math:`m` is the seasonal period of the time series (``eval_metric_seasonal_period``). Properties: - scaled metric (normalizes the error for each time series by the scale of that time series) - undefined for constant time series - heavily penalizes models that cannot quickly adapt to abrupt changes in the time series - sensitive to outliers - prefers models that accurately estimate the mean (expected value) References ---------- - `Forecasting: Principles and Practice <https://otexts.com/fpp3/accuracy.html#scaled-errors>`_ """ equivalent_tabular_regression_metric = "root_mean_squared_error" def __init__(self): self._past_squared_seasonal_error: Optional[pd.Series] = None def save_past_metrics( self, data_past: TimeSeriesDataFrame, target: str = "target", seasonal_period: int = 1, **kwargs ) -> None: self._past_squared_seasonal_error = _in_sample_squared_seasonal_error( y_past=data_past[target], seasonal_period=seasonal_period ) def clear_past_metrics(self) -> None: self._past_squared_seasonal_error = None def compute_metric( self, data_future: TimeSeriesDataFrame, predictions: TimeSeriesDataFrame, target: str = "target", **kwargs ) -> float: y_true, y_pred = self._get_point_forecast_score_inputs(data_future, predictions, target=target) if self._past_squared_seasonal_error is None: raise AssertionError("Call `save_past_metrics` before `compute_metric`") mse_per_item = (y_true - y_pred).pow(2.0).groupby(level=ITEMID, sort=False).mean() return np.sqrt(self._safemean(mse_per_item / self._past_squared_seasonal_error))