.. _forecasting_zoo: Forecasting Time Series - Model Zoo =================================== .. note:: This documentation is intended for advanced users and may not be comprehensive. For a stable public API, refer to TimeSeriesPredictor. This page contains the list of time series forecasting models available in AutoGluon. The available hyperparameters for each model are listed under **Other Parameters**. This list is useful if you want to override the default hyperparameters (:ref:`sec_forecasting_indepth_manual_config`) or define custom hyperparameter search spaces (:ref:`sec_forecasting_indepth_hpo`), as described in the In-depth Tutorial. For example, the following code will train a ``TimeSeriesPredictor`` with ``DeepAR`` and ``ETS`` models with default hyperparameters (and a weighted ensemble on top of them):: predictor = TimeSeriesPredictor().fit( train_data, hyperparameters={ "DeepAR": {}, "ETS": {}, }, ) Note that we don't include the ``Model`` suffix when specifying the model name in ``hyperparameters`` (e.g., the class :class:`~autogluon.timeseries.models.DeepARModel` corresponds to the name ``"DeepAR"`` in the ``hyperparameters`` dictionary). Also note that some of the models' hyperparameters have names and default values that are different from the original libraries. Default models -------------- .. automodule:: autogluon.timeseries.models .. currentmodule:: autogluon.timeseries.models .. autosummary:: :nosignatures: NaiveModel SeasonalNaiveModel ARIMAModel ETSModel ThetaModel AutoETSModel AutoARIMAModel DynamicOptimizedThetaModel AutoGluonTabularModel DeepARModel SimpleFeedForwardModel TemporalFusionTransformerModel :hidden:`NaiveModel` ~~~~~~~~~~~~~~~~~~~~ .. autoclass:: NaiveModel :members: init :hidden:`SeasonalNaiveModel` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: SeasonalNaiveModel :members: init :hidden:`ARIMAModel` ~~~~~~~~~~~~~~~~~~~~ .. autoclass:: ARIMAModel :members: init :hidden:`ETSModel` ~~~~~~~~~~~~~~~~~~ .. autoclass:: ETSModel :members: init :hidden:`ThetaModel` ~~~~~~~~~~~~~~~~~~~~ .. autoclass:: ThetaModel :members: init :hidden:`AutoETSModel` ~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: AutoETSModel :members: init :hidden:`AutoARIMAModel` ~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: AutoARIMAModel :members: init :hidden:`DynamicOptimizedThetaModel` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: DynamicOptimizedThetaModel :members: init :hidden:`AutoGluonTabularModel` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: AutoGluonTabularModel :members: init :hidden:`DeepARModel` ~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: DeepARModel :members: init :hidden:`SimpleFeedForwardModel` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: SimpleFeedForwardModel :members: init :hidden:`TemporalFusionTransformerModel` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: TemporalFusionTransformerModel :members: init MXNet Models ------------ Following MXNet-based models from GluonTS are available in AutoGluon. - ``DeepARMXNetModel`` - ``MQCNNMXNetModel`` - ``MQRNNMXNetModel`` - ``SimpleFeedForwardMXNetModel`` - ``TemporalFusionTransformerMXNetModel`` - ``TransformerMXNetModel`` Documentation and hyperparameter settings for these models can be found `here `_. Using the above models requires installing Apache MXNet v1.9. This can be done as follows:: python -m pip install mxnet~=1.9 If you want to use a GPU, install the version of MXNet that matches your CUDA version. See the MXNet `documentation `_ for more info. If a GPU is available and MXNet version with CUDA is installed, all the MXNet models will be trained using the GPU. Otherwise, the models will be trained on CPU. Additional features ------------------- Overview of the additional features and covariates supported by different models. Models not included in this table currently do not support any additional features. .. list-table:: :header-rows: 1 :stub-columns: 1 :align: center :widths: 40 15 15 15 15 * - Model - Static features (continuous) - Static features (categorical) - Known covariates (continuous) - Past covariates (continuous) * - :class:`~autogluon.timeseries.models.AutoGluonTabularModel` - ✓ - ✓ - ✓ - ✓ * - :class:`~autogluon.timeseries.models.DeepARModel` - ✓ - ✓ - ✓ - * - :class:`~autogluon.timeseries.models.TemporalFusionTransformerModel` - ✓ - ✓ - ✓ - ✓ * - :class:`~autogluon.timeseries.models.gluonts.mx.DeepARMXNetModel` - ✓ - ✓ - ✓ - * - :class:`~autogluon.timeseries.models.gluonts.mx.MQCNNMXNetModel` - ✓ - ✓ - ✓ - ✓ * - :class:`~autogluon.timeseries.models.gluonts.mx.TemporalFusionTransformerMXNetModel` - ✓ - - ✓ -