Image Data -- Object Detection ============================== Pre-requisite ------------- All detection modules depend on ``mmcv-full``, ``mmdet`` and ``pycocotools`` packages. To install ``mmcv-full``, run: ``mim install mmcv-full`` To install ``mmdet``, run: ``pip install mmdet`` To install ``pycocotools``, run: ``pip install pycocotools`` We suggest to install the version between ``pycocotools>=2.0.5,<2.0.7``. Note that Windows users should install ``pycocotools`` by: ``pip install pycocotools-windows``, but it only supports python 3.6/3.7/3.8. For additional support, please refer to official instructions for mmdet_ and mmcv-full_ .. _mmdet: https://mmdetection.readthedocs.io/en/v2.2.1/install.html .. _mmcv-full: https://mmcv.readthedocs.io/en/latest/get_started/installation.html Quick Start ------------------ .. container:: cards .. card:: :title: Quick Start on a Tiny COCO Format Dataset :link: quick_start/quick_start_coco.html How to train high quality object detection model with MultiModalPredictor in under 5 minutes on COCO format dataset. Data Preparation ------------------ .. container:: cards .. card:: :title: Prepare COCO2017 Dataset :link: data_preparation/prepare_coco17.html How to prepare COCO2017 dataset for object detection. .. card:: :title: Prepare Pascal VOC Dataset :link: data_preparation/prepare_voc.html How to prepare Pascal VOC dataset for object detection. .. card:: :title: Prepare Watercolor Dataset :link: data_preparation/prepare_watercolor.html How to prepare Watercolor dataset for object detection. .. card:: :title: Convert VOC Format Dataset to COCO Format :link: data_preparation/voc_to_coco.html How to convert a dataset from VOC format to COCO format for object detection. .. card:: :title: Object Detection with DataFrame :link: data_preparation/object_detection_with_dataframe.html How to use pd.DataFrame format for object detection Finetune ------------------ .. container:: cards .. card:: :title: Fast Finetune on COCO Format Dataset :link: finetune/detection_fast_finetune_coco.html How to fast finetune a pretrained model on a dataset in COCO format. .. card:: :title: High Performance Finetune on COCO Format Dataset :link: finetune/detection_high_performance_finetune_coco.html How to finetune a pretrained model on a dataset in COCO format with high performance. Evaluation ------------------ .. container:: cards .. card:: :title: Evaluate Pretrained YOLOv3 on COCO Format Dataset :link: evaluation/detection_eval_yolov3_coco.html How to evaluate the very fast pretrained YOLOv3 model on dataset in COCO format .. card:: :title: Evaluate Pretrained Faster R-CNN on COCO Format Dataset :link: evaluation/detection_eval_fasterrcnn_coco.html How to evaluate the pretrained Faster R-CNN model with high performance on dataset in COCO format .. card:: :title: Evaluate Pretrained Deformable DETR on COCO Format Dataset :link: evaluation/detection_eval_ddetr_coco.html How to evaluate the pretrained Deformable DETR model with higher performance on dataset in COCO format .. card:: :title: Evaluate Pretrained Faster R-CNN on VOC Format Dataset :link: evaluation/detection_eval_fasterrcnn_voc.html How to evaluate the pretrained Faster R-CNN model on dataset in VOC format .. toctree:: :maxdepth: 1 :hidden: quick_start/index data_preparation/index finetune/index inference/index evaluation/index