.. _sec_tabularcustommodeladvanced: Adding a custom model to AutoGluon (Advanced) ============================================= **Tip**: If you are new to AutoGluon, review :ref:`sec_tabularquick` to learn the basics of the AutoGluon API. In this tutorial we will cover advanced custom model options that go beyond the topics covered in :ref:`sec_tabularcustommodel`. It is assumed that you have fully read through :ref:`sec_tabularcustommodel` prior to this tutorial. Loading the data ---------------- First we will load the data. For this tutorial we will use the adult income dataset because it has a mix of integer, float, and categorical features. .. code:: python from autogluon.tabular import TabularDataset train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') # can be local CSV file as well, returns Pandas DataFrame test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') # another Pandas DataFrame label = 'class' # specifies which column do we want to predict train_data = train_data.sample(n=1000, random_state=0) # subsample for faster demo train_data.head(5) .. raw:: html
age workclass fnlwgt education education-num marital-status occupation relationship race sex capital-gain capital-loss hours-per-week native-country class
6118 51 Private 39264 Some-college 10 Married-civ-spouse Exec-managerial Wife White Female 0 0 40 United-States >50K
23204 58 Private 51662 10th 6 Married-civ-spouse Other-service Wife White Female 0 0 8 United-States <=50K
29590 40 Private 326310 Some-college 10 Married-civ-spouse Craft-repair Husband White Male 0 0 44 United-States <=50K
18116 37 Private 222450 HS-grad 9 Never-married Sales Not-in-family White Male 0 2339 40 El-Salvador <=50K
33964 62 Private 109190 Bachelors 13 Married-civ-spouse Exec-managerial Husband White Male 15024 0 40 United-States >50K
Force features to be passed to models without preprocessing / dropping ---------------------------------------------------------------------- Reasons why you would want to do this is if you have model logic that requires a particular column to always be present, regardless of its content. For example, if you are fine-tuning a pre-trained language model that expects a feature indicating the language of the text in a given row which dictates how the text is preprocessed, but training data only includes one language, without this adjustment the language identifier feature would be dropped prior to fitting the model. Force features to not be dropped in model-specific preprocessing ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To avoid dropping features in custom models due to having only 1 unique value, add the following ``_get_default_auxiliary_params`` method to your custom model class: .. code:: python from autogluon.core.models import AbstractModel class DummyModel(AbstractModel): def _fit(self, X, **kwargs): print(f'Before {self.__class__.__name__} Preprocessing ({len(X.columns)} features):\n\t{list(X.columns)}') X = self.preprocess(X) print(f'After {self.__class__.__name__} Preprocessing ({len(X.columns)} features):\n\t{list(X.columns)}') print(X.head(5)) class DummyModelKeepUnique(DummyModel): def _get_default_auxiliary_params(self) -> dict: default_auxiliary_params = super()._get_default_auxiliary_params() extra_auxiliary_params = dict( drop_unique=False, # Whether to drop features that have only 1 unique value, default is True ) default_auxiliary_params.update(extra_auxiliary_params) return default_auxiliary_params Force features to not be dropped in global preprocessing ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ While the above fix for model-specific preprocessing works if the feature is still present after global preprocessing, it won’t help if the feature was already dropped before getting to the model. For this, we need to create a new feature generator class which separates the preprocessing logic between normal features and user override features. Here is an example implementation: .. code:: python # WARNING: To use this in practice, you must put this code in a separate python file # from the main process and import it or else it will not be serializable.) from autogluon.features import BulkFeatureGenerator, AutoMLPipelineFeatureGenerator, IdentityFeatureGenerator class CustomFeatureGeneratorWithUserOverride(BulkFeatureGenerator): def __init__(self, automl_generator_kwargs: dict = None, **kwargs): generators = self._get_default_generators(automl_generator_kwargs=automl_generator_kwargs) super().__init__(generators=generators, **kwargs) def _get_default_generators(self, automl_generator_kwargs: dict = None): if automl_generator_kwargs is None: automl_generator_kwargs = dict() generators = [ [ # Preprocessing logic that handles normal features AutoMLPipelineFeatureGenerator(banned_feature_special_types=['user_override'], **automl_generator_kwargs), # Preprocessing logic that handles special features user wishes to treat separately, here we simply skip preprocessing for these features. IdentityFeatureGenerator(infer_features_in_args=dict(required_special_types=['user_override'])), ], ] return generators The above code splits the preprocessing logic of a feature depending on if it is tagged with the ``'user_override'`` special type in feature metadata. To tag three features ``['age', 'native-country', 'dummy_feature']`` in this way, you can do the following: .. code:: python # add a useless dummy feature to show that it is not dropped in preprocessing train_data['dummy_feature'] = 'dummy value' test_data['dummy_feature'] = 'dummy value' from autogluon.tabular import FeatureMetadata feature_metadata = FeatureMetadata.from_df(train_data) print('Before inserting overrides:') print(feature_metadata) feature_metadata = feature_metadata.add_special_types( { 'age': ['user_override'], 'native-country': ['user_override'], 'dummy_feature': ['user_override'], } ) print('After inserting overrides:') print(feature_metadata) .. parsed-literal:: :class: output Before inserting overrides: ('int', []) : 6 | ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', ...] ('object', []) : 10 | ['workclass', 'education', 'marital-status', 'occupation', 'relationship', ...] After inserting overrides: ('int', []) : 5 | ['fnlwgt', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week'] ('int', ['user_override']) : 1 | ['age'] ('object', []) : 8 | ['workclass', 'education', 'marital-status', 'occupation', 'relationship', ...] ('object', ['user_override']) : 2 | ['native-country', 'dummy_feature'] Note that this is only one example implementation of a custom feature generator that has bifurcated preprocessing logic. Users can make their tagging and feature generator logic arbitrarily complex to fit their needs. In this example, we perform the standard preprocessing on non-tagged features, and for tagged features we pass them through ``IdentityFeatureGenerator`` which is a no-op logic that does not alter the features in any way. Instead of an ``IdentityFeatureGenerator``, you could use any kind of feature generator to suite your needs. Putting it all together ~~~~~~~~~~~~~~~~~~~~~~~ .. code:: python # Separate features and labels X = train_data.drop(columns=[label]) y = train_data[label] X_test = test_data.drop(columns=[label]) y_test = test_data[label] # preprocess the label column, as done in the prior custom model tutorial from autogluon.core.data import LabelCleaner from autogluon.core.utils import infer_problem_type # Construct a LabelCleaner to neatly convert labels to float/integers during model training/inference, can also use to inverse_transform back to original. problem_type = infer_problem_type(y=y) # Infer problem type (or else specify directly) label_cleaner = LabelCleaner.construct(problem_type=problem_type, y=y) y_preprocessed = label_cleaner.transform(y) y_test_preprocessed = label_cleaner.transform(y_test) # Make sure to specify your custom feature metadata to the feature generator my_custom_feature_generator = CustomFeatureGeneratorWithUserOverride(feature_metadata_in=feature_metadata) X_preprocessed = my_custom_feature_generator.fit_transform(X) X_test_preprocessed = my_custom_feature_generator.transform(X_test) Notice how the user_override features were not preprocessed: .. code:: python print(list(X_preprocessed.columns)) X_preprocessed.head(5) .. parsed-literal:: :class: output ['fnlwgt', 'education-num', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race', 'age', 'native-country', 'dummy_feature'] .. raw:: html
fnlwgt education-num sex capital-gain capital-loss hours-per-week workclass education marital-status occupation relationship race age native-country dummy_feature
6118 39264 10 0 0 0 40 3 14 1 4 5 4 51 United-States dummy value
23204 51662 6 0 0 0 8 3 0 1 8 5 4 58 United-States dummy value
29590 326310 10 1 0 0 44 3 14 1 3 0 4 40 United-States dummy value
18116 222450 9 1 0 2339 40 3 11 3 12 1 4 37 El-Salvador dummy value
33964 109190 13 1 15024 0 40 3 9 1 4 0 4 62 United-States dummy value
Now lets see what happens when we send this data to fit a dummy model: .. code:: python dummy_model = DummyModel() dummy_model.fit(X=X, y=y, feature_metadata=my_custom_feature_generator.feature_metadata) .. parsed-literal:: :class: output Before DummyModel Preprocessing (15 features): ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'dummy_feature'] After DummyModel Preprocessing (14 features): ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country'] age workclass fnlwgt education education-num \ 6118 51 Private 39264 Some-college 10 23204 58 Private 51662 10th 6 29590 40 Private 326310 Some-college 10 18116 37 Private 222450 HS-grad 9 33964 62 Private 109190 Bachelors 13 marital-status occupation relationship race sex \ 6118 Married-civ-spouse Exec-managerial Wife White Female 23204 Married-civ-spouse Other-service Wife White Female 29590 Married-civ-spouse Craft-repair Husband White Male 18116 Never-married Sales Not-in-family White Male 33964 Married-civ-spouse Exec-managerial Husband White Male capital-gain capital-loss hours-per-week native-country 6118 0 0 40 United-States 23204 0 0 8 United-States 29590 0 0 44 United-States 18116 0 2339 40 El-Salvador 33964 15024 0 40 United-States .. parsed-literal:: :class: output <__main__.DummyModel at 0x7f1849fd8160> Notice how the model dropped ``dummy_feature`` during the preprocess call. Now lets see what happens if we use ``DummyModelKeepUnique``: .. code:: python dummy_model_keep_unique = DummyModelKeepUnique() dummy_model_keep_unique.fit(X=X, y=y, feature_metadata=my_custom_feature_generator.feature_metadata) .. parsed-literal:: :class: output Before DummyModelKeepUnique Preprocessing (15 features): ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'dummy_feature'] After DummyModelKeepUnique Preprocessing (15 features): ['age', 'workclass', 'fnlwgt', 'education', 'education-num', 'marital-status', 'occupation', 'relationship', 'race', 'sex', 'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'dummy_feature'] age workclass fnlwgt education education-num \ 6118 51 Private 39264 Some-college 10 23204 58 Private 51662 10th 6 29590 40 Private 326310 Some-college 10 18116 37 Private 222450 HS-grad 9 33964 62 Private 109190 Bachelors 13 marital-status occupation relationship race sex \ 6118 Married-civ-spouse Exec-managerial Wife White Female 23204 Married-civ-spouse Other-service Wife White Female 29590 Married-civ-spouse Craft-repair Husband White Male 18116 Never-married Sales Not-in-family White Male 33964 Married-civ-spouse Exec-managerial Husband White Male capital-gain capital-loss hours-per-week native-country \ 6118 0 0 40 United-States 23204 0 0 8 United-States 29590 0 0 44 United-States 18116 0 2339 40 El-Salvador 33964 15024 0 40 United-States dummy_feature 6118 dummy value 23204 dummy value 29590 dummy value 18116 dummy value 33964 dummy value .. parsed-literal:: :class: output <__main__.DummyModelKeepUnique at 0x7f1849f88fa0> Now ``dummy_feature`` is no longer dropped! The above code logic can be re-used for testing your own complex model implementations, simply replace ``DummyModelKeepUnique`` with your custom model and check that it keeps the features you want to use. Keeping Features via TabularPredictor ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Now let’s demonstrate how to do this via TabularPredictor in far fewer lines of code. Note that this code will raise an exception if ran in this tutorial because the custom model and feature generator must exist in other files for them to be serializable. Therefore, we will not run the code in the tutorial. (It will also raise an exception because DummyModel isn’t a real model) :: from autogluon.tabular import TabularPredictor feature_generator = CustomFeatureGeneratorWithUserOverride() predictor = TabularPredictor(label=label) predictor.fit( train_data=train_data, feature_metadata=feature_metadata, # feature metadata with your overrides feature_generator=feature_generator, # your custom feature generator that handles the overrides hyperparameters={ 'GBM': {}, # Can fit your custom model alongside default models DummyModel: {}, # Will drop dummy_feature DummyModelKeepUnique: {}, # Will not drop dummy_feature # DummyModel: {'ag_args_fit': {'drop_unique': False}}, # This is another way to get same result as using DummyModelKeepUnique } )