.. _sec_object_detection_quick: Object Detection - Quick Start ============================== Object detection is the process of identifying and localizing objects in an image and is an important task in computer vision. Follow this tutorial to learn how to use AutoGluon for object detection. **Tip**: If you are new to AutoGluon, review :ref:`sec_imgquick` first to learn the basics of the AutoGluon API. Our goal is to detect motorbike in images by `YOLOv3 model `__. A tiny dataset is collected from VOC dataset, which only contains the motorbike category. The model pretrained on the COCO dataset is used to fine-tune our small dataset. With the help of AutoGluon, we are able to try many models with different hyperparameters automatically, and return the best one as our final model. To start, import ObjectDetector: .. code:: python from autogluon.vision import ObjectDetector .. parsed-literal:: :class: output /home/ci/opt/venv/lib/python3.8/site-packages/gluoncv/__init__.py:40: UserWarning: Both `mxnet==1.9.1` and `torch==1.12.1+cu102` are installed. You might encounter increased GPU memory footprint if both framework are used at the same time. warnings.warn(f'Both `mxnet=={mx.__version__}` and `torch=={torch.__version__}` are installed. ' INFO:matplotlib.font_manager:generated new fontManager INFO:torch.distributed.nn.jit.instantiator:Created a temporary directory at /tmp/tmp7gmo9777 INFO:torch.distributed.nn.jit.instantiator:Writing /tmp/tmp7gmo9777/_remote_module_non_scriptable.py INFO:root:Generating grammar tables from /usr/lib/python3.8/lib2to3/Grammar.txt INFO:root:Generating grammar tables from /usr/lib/python3.8/lib2to3/PatternGrammar.txt Tiny_motorbike Dataset ---------------------- We collect a toy dataset for detecting motorbikes in images. From the VOC dataset, images are randomly selected for training, validation, and testing - 120 images for training, 50 images for validation, and 50 for testing. This tiny dataset follows the same format as VOC. Using the commands below, we can download this dataset, which is only 23M. The name of unzipped folder is called ``tiny_motorbike``. Anyway, the task dataset helper can perform the download and extraction automatically, and load the dataset according to the detection formats. .. code:: python url = 'https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip' dataset_train = ObjectDetector.Dataset.from_voc(url, splits='trainval') .. parsed-literal:: :class: output Downloading /home/ci/.gluoncv/archive/tiny_motorbike.zip from https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip... .. parsed-literal:: :class: output 21273KB [00:01, 19119.50KB/s] .. parsed-literal:: :class: output tiny_motorbike/ ├── Annotations/ ├── ImageSets/ └── JPEGImages/ Fit Models by AutoGluon ----------------------- In this section, we demonstrate how to apply AutoGluon to fit our detection models. We use mobilenet as the backbone for the YOLOv3 model. Two different learning rates are used to fine-tune the network. The best model is the one that obtains the best performance on the validation dataset. You can also try using more networks and hyperparameters to create a larger searching space. We ``fit`` a classifier using AutoGluon as follows. In each experiment (one trial in our searching space), we train the model for 5 epochs to avoid bursting our tutorial runtime. .. code:: python time_limit = 60*30 # at most 0.5 hour detector = ObjectDetector() hyperparameters = {'epochs': 5, 'batch_size': 8} hyperparameter_tune_kwargs={'num_trials': 2} detector.fit(dataset_train, time_limit=time_limit, hyperparameters=hyperparameters, hyperparameter_tune_kwargs=hyperparameter_tune_kwargs) .. parsed-literal:: :class: output ============================================================================= WARNING: ObjectDetector is deprecated as of v0.4.0 and may contain various bugs and issues! In a future release ObjectDetector may be entirely reworked to use Torch as a backend. This future change will likely be API breaking.Users should ensure they update their code that depends on ObjectDetector when upgrading to future AutoGluon releases. For more information, refer to ObjectDetector refactor GitHub issue: https://github.com/awslabs/autogluon/issues/1559 ============================================================================= The number of requested GPUs is greater than the number of available GPUs.Reduce the number to 1 Randomly split train_data into train[150]/validation[20] splits. Starting HPO experiments .. parsed-literal:: :class: output 0%| | 0/2 [00:00 != ): { INFO:SSDEstimator:root.train.epochs 20 != 5 INFO:SSDEstimator:root.train.early_stop_baseline 0.0 != -inf INFO:SSDEstimator:root.train.seed 233 != 304 INFO:SSDEstimator:root.train.early_stop_max_value 1.0 != inf INFO:SSDEstimator:root.train.batch_size 16 != 8 INFO:SSDEstimator:root.train.early_stop_patience -1 != 10 INFO:SSDEstimator:root.num_workers 4 != 8 INFO:SSDEstimator:root.gpus (0, 1, 2, 3) != (0,) INFO:SSDEstimator:root.valid.batch_size 16 != 8 INFO:SSDEstimator:root.ssd.base_network vgg16_atrous != resnet50_v1 INFO:SSDEstimator:root.ssd.data_shape 300 != 512 INFO:SSDEstimator:root.dataset voc_tiny != auto INFO:SSDEstimator:root.dataset_root ~/.mxnet/datasets/ != auto INFO:SSDEstimator:} INFO:SSDEstimator:Saved config to /home/ci/autogluon/docs/_build/eval/tutorials/object_detection/4bc97620/.trial_0/config.yaml INFO:SSDEstimator:Using transfer learning from ssd_512_resnet50_v1_coco, the other network parameters are ignored. INFO:root:Model file not found. Downloading. .. parsed-literal:: :class: output Downloading /home/ci/.mxnet/models/ssd_512_resnet50_v1_coco-c4835162.zip from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/models/ssd_512_resnet50_v1_coco-c4835162.zip... .. parsed-literal:: :class: output 0%| | 0/181188 [00:00, 'gpus': [0], 'horovod': False, 'num_workers': 8, 'resume': '', 'save_interval': 1, 'ssd': { 'amp': False, 'base_network': 'resnet50_v1', 'data_shape': 512, 'filters': None, 'nms_thresh': 0.45, 'nms_topk': 400, 'ratios': ( [1, 2, 0.5], [1, 2, 0.5, 3, 0.3333333333333333], [1, 2, 0.5, 3, 0.3333333333333333], [1, 2, 0.5, 3, 0.3333333333333333], [1, 2, 0.5], [1, 2, 0.5]), 'sizes': (30, 60, 111, 162, 213, 264, 315), 'steps': (8, 16, 32, 64, 100, 300), 'syncbn': False, 'transfer': 'ssd_512_resnet50_v1_coco'}, 'train': { 'batch_size': 8, 'dali': False, 'early_stop_baseline': -inf, 'early_stop_max_value': inf, 'early_stop_min_delta': 0.001, 'early_stop_patience': 10, 'epochs': 5, 'log_interval': 100, 'lr': 0.001, 'lr_decay': 0.1, 'lr_decay_epoch': (160, 200), 'momentum': 0.9, 'seed': 304, 'start_epoch': 0, 'wd': 0.0005}, 'valid': { 'batch_size': 8, 'iou_thresh': 0.5, 'metric': 'voc07', 'val_interval': 1}}, 'total_time': 76.79892778396606, 'train_map': 0.7013412996382214, 'valid_map': 0.6834984532415778} .. parsed-literal:: :class: output Note that ``num_trials=2`` above is only used to speed up the tutorial. In normal practice, it is common to only use ``time_limit`` and drop ``num_trials``. Also note that hyperparameter tuning defaults to random search. After fitting, AutoGluon automatically returns the best model among all models in the searching space. From the output, we know the best model is the one trained with the second learning rate. To see how well the returned model performed on test dataset, call detector.evaluate(). .. code:: python dataset_test = ObjectDetector.Dataset.from_voc(url, splits='test') test_map = detector.evaluate(dataset_test) print("mAP on test dataset: {}".format(test_map[1][-1])) .. parsed-literal:: :class: output tiny_motorbike/ ├── Annotations/ ├── ImageSets/ └── JPEGImages/ mAP on test dataset: 0.12157768403857265 Below, we randomly select an image from test dataset and show the predicted class, box and probability over the origin image, stored in ``predict_class``, ``predict_rois`` and ``predict_score`` columns, respectively. You can interpret ``predict_rois`` as a dict of (``xmin``, ``ymin``, ``xmax``, ``ymax``) proportional to original image size. .. code:: python image_path = dataset_test.iloc[0]['image'] result = detector.predict(image_path) print(result) .. parsed-literal:: :class: output predict_class predict_score \ 0 motorbike 0.964290 1 person 0.901450 2 motorbike 0.379375 3 car 0.224108 4 person 0.151031 .. ... ... 76 person 0.026454 77 person 0.026297 78 person 0.026240 79 chair 0.025993 80 person 0.025979 predict_rois 0 {'xmin': 0.32511788606643677, 'ymin': 0.426943... 1 {'xmin': 0.38163241744041443, 'ymin': 0.279039... 2 {'xmin': 0.0, 'ymin': 0.6350289583206177, 'xma... 3 {'xmin': 0.0, 'ymin': 0.6296865940093994, 'xma... 4 {'xmin': 0.03611136972904205, 'ymin': 0.0, 'xm... .. ... 76 {'xmin': 0.8196716904640198, 'ymin': 0.4491611... 77 {'xmin': 0.40028253197669983, 'ymin': 0.757062... 78 {'xmin': 0.9661840200424194, 'ymin': 0.2806696... 79 {'xmin': 0.11712463200092316, 'ymin': 0.011974... 80 {'xmin': 0.993757426738739, 'ymin': 0.08150030... [81 rows x 3 columns] Prediction with multiple images is permitted: .. code:: python bulk_result = detector.predict(dataset_test) print(bulk_result) .. parsed-literal:: :class: output predict_class predict_score \ 0 motorbike 0.964290 1 person 0.901450 2 motorbike 0.379375 3 car 0.224108 4 person 0.151031 ... ... ... 3760 motorbike 0.017063 3761 car 0.017042 3762 person 0.016949 3763 person 0.016934 3764 motorbike 0.016925 predict_rois \ 0 {'xmin': 0.32511788606643677, 'ymin': 0.426943... 1 {'xmin': 0.38163241744041443, 'ymin': 0.279039... 2 {'xmin': 0.0, 'ymin': 0.6350289583206177, 'xma... 3 {'xmin': 0.0, 'ymin': 0.6296865940093994, 'xma... 4 {'xmin': 0.03611136972904205, 'ymin': 0.0, 'xm... ... ... 3760 {'xmin': 0.11219224333763123, 'ymin': 0.560805... 3761 {'xmin': 0.8976275324821472, 'ymin': 0.7462039... 3762 {'xmin': 0.3027859032154083, 'ymin': 0.4321423... 3763 {'xmin': 0.7102004289627075, 'ymin': 0.2931949... 3764 {'xmin': 0.7111496925354004, 'ymin': 0.8699753... image 0 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 1 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 2 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 4 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... ... ... 3760 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3761 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3762 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3763 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3764 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... [3765 rows x 4 columns] We can also save the trained model, and use it later. .. warning:: ``ObjectDetector.load()`` used ``pickle`` module implicitly, which is known to be insecure. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling. Never load data that could have come from an untrusted source, or that could have been tampered with. **Only load data you trust.** .. code:: python savefile = 'detector.ag' detector.save(savefile) new_detector = ObjectDetector.load(savefile) .. parsed-literal:: :class: output /home/ci/opt/venv/lib/python3.8/site-packages/mxnet/gluon/block.py:1784: UserWarning: Cannot decide type for the following arguments. Consider providing them as input: data: None input_sym_arg_type = in_param.infer_type()[0]