.. _sec_tabularprediction_multimodal: Multimodal Data Tables: Tabular, Text, and Image ================================================ **Tip**: Prior to reading this tutorial, it is recommended to have a basic understanding of the TabularPredictor API covered in :ref:`sec_tabularquick`. In this tutorial, we will train a multi-modal ensemble using data that contains image, text, and tabular features. Note: A GPU is required for this tutorial in order to train the image and text models. Additionally, GPU installations are required for MXNet and Torch with appropriate CUDA versions. The PetFinder Dataset --------------------- We will be using the `PetFinder dataset `__. The PetFinder dataset provides information about shelter animals that appear on their adoption profile with the goal to predict the adoption rate of the animal. The end goal is for rescue shelters to use the predicted adoption rate to identify animals whose profiles could be improved so that they can find a home. Each animal's adoption profile contains a variety of information, such as pictures of the animal, a text description of the animal, and various tabular features such as age, breed, name, color, and more. To get started, we first need to download the dataset. Datasets that contain images require more than a CSV file, so the dataset is packaged in a zip file in S3. We will first download it and unzip the contents: .. code:: python download_dir = './ag_petfinder_tutorial' zip_file = 'https://automl-mm-bench.s3.amazonaws.com/petfinder_kaggle.zip' .. code:: python from autogluon.core.utils.loaders import load_zip load_zip.unzip(zip_file, unzip_dir=download_dir) .. parsed-literal:: :class: output Downloading ./ag_petfinder_tutorial/file.zip from https://automl-mm-bench.s3.amazonaws.com/petfinder_kaggle.zip... .. parsed-literal:: :class: output 100%|██████████| 2.00G/2.00G [03:14<00:00, 10.3MiB/s] Now that the data is download and unzipped, let's take a look at the contents: .. code:: python import os os.listdir(download_dir) .. parsed-literal:: :class: output ['petfinder_processed', 'file.zip'] 'file.zip' is the original zip file we downloaded, and 'petfinder\_processed' is a directory containing the dataset files. .. code:: python dataset_path = download_dir + '/petfinder_processed' os.listdir(dataset_path) .. parsed-literal:: :class: output ['test.csv', 'dev.csv', 'test_images', 'train_images', 'train.csv'] Here we can see the train, test, and dev CSV files, as well as two directories: 'test\_images' and 'train\_images' which contain the image JPG files. Note: We will be using the dev data as testing data as dev contains the ground truth labels for showing scores via ``predictor.leaderboard``. Let's take a peek at the first 10 files inside of the 'train\_images' directory: .. code:: python os.listdir(dataset_path + '/train_images')[:10] .. parsed-literal:: :class: output ['ca587cb42-1.jpg', 'ae00eded4-4.jpg', '6e3457b81-2.jpg', 'acb248693-1.jpg', '0bd867d1b-1.jpg', 'fa53dd6cd-1.jpg', '9726ab93e-1.jpg', '39818f12c-2.jpg', '90ce48a71-2.jpg', '2ece6b26b-1.jpg'] As expected, these are the images we will be training with alongside the other features. Next, we will load the train and dev CSV files: .. code:: python import pandas as pd train_data = pd.read_csv(f'{dataset_path}/train.csv', index_col=0) test_data = pd.read_csv(f'{dataset_path}/dev.csv', index_col=0) .. code:: python train_data.head(3) .. raw:: html
Type Name Age Breed1 Breed2 Gender Color1 Color2 Color3 MaturitySize ... Quantity Fee State RescuerID VideoAmt Description PetID PhotoAmt AdoptionSpeed Images
10721 1 Elbi 2 307 307 2 5 0 0 3 ... 1 0 41336 e9a86209c54f589ba72c345364cf01aa 0 I'm looking for people to adopt my dog e4b90955c 4.0 4 train_images/e4b90955c-1.jpg;train_images/e4b9...
13114 2 Darling 4 266 0 1 1 0 0 2 ... 1 0 41401 01f954cdf61526daf3fbeb8a074be742 0 Darling was born at the back lane of Jalan Alo... a0c1384d1 5.0 3 train_images/a0c1384d1-1.jpg;train_images/a0c1...
13194 1 Wolf 3 307 0 1 1 2 0 2 ... 1 0 41332 6e19409f2847326ce3b6d0cec7e42f81 0 I found Wolf about a month ago stuck in a drai... cf357f057 7.0 4 train_images/cf357f057-1.jpg;train_images/cf35...

3 rows × 25 columns

Looking at the first 3 examples, we can tell that there is a variety of tabular features, a text description ('Description'), and an image path ('Images'). For the PetFinder dataset, we will try to predict the speed of adoption for the animal ('AdoptionSpeed'), grouped into 5 categories. This means that we are dealing with a multi-class classification problem. .. code:: python label = 'AdoptionSpeed' image_col = 'Images' Preparing the image column -------------------------- Let's take a look at what a value in the image column looks like: .. code:: python train_data[image_col].iloc[0] .. parsed-literal:: :class: output 'train_images/e4b90955c-1.jpg;train_images/e4b90955c-2.jpg;train_images/e4b90955c-3.jpg;train_images/e4b90955c-4.jpg' Currently, AutoGluon only supports one image per row. Since the PetFinder dataset contains one or more images per row, we first need to preprocess the image column to only contain the first image of each row. .. code:: python train_data[image_col] = train_data[image_col].apply(lambda ele: ele.split(';')[0]) test_data[image_col] = test_data[image_col].apply(lambda ele: ele.split(';')[0]) train_data[image_col].iloc[0] .. parsed-literal:: :class: output 'train_images/e4b90955c-1.jpg' AutoGluon loads images based on the file path provided by the image column. Here we update the path to point to the correct location on disk: .. code:: python def path_expander(path, base_folder): path_l = path.split(';') return ';'.join([os.path.abspath(os.path.join(base_folder, path)) for path in path_l]) train_data[image_col] = train_data[image_col].apply(lambda ele: path_expander(ele, base_folder=dataset_path)) test_data[image_col] = test_data[image_col].apply(lambda ele: path_expander(ele, base_folder=dataset_path)) train_data[image_col].iloc[0] .. parsed-literal:: :class: output '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/ag_petfinder_tutorial/petfinder_processed/train_images/e4b90955c-1.jpg' .. code:: python train_data.head(3) .. raw:: html
Type Name Age Breed1 Breed2 Gender Color1 Color2 Color3 MaturitySize ... Quantity Fee State RescuerID VideoAmt Description PetID PhotoAmt AdoptionSpeed Images
10721 1 Elbi 2 307 307 2 5 0 0 3 ... 1 0 41336 e9a86209c54f589ba72c345364cf01aa 0 I'm looking for people to adopt my dog e4b90955c 4.0 4 /var/lib/jenkins/workspace/workspace/autogluon...
13114 2 Darling 4 266 0 1 1 0 0 2 ... 1 0 41401 01f954cdf61526daf3fbeb8a074be742 0 Darling was born at the back lane of Jalan Alo... a0c1384d1 5.0 3 /var/lib/jenkins/workspace/workspace/autogluon...
13194 1 Wolf 3 307 0 1 1 2 0 2 ... 1 0 41332 6e19409f2847326ce3b6d0cec7e42f81 0 I found Wolf about a month ago stuck in a drai... cf357f057 7.0 4 /var/lib/jenkins/workspace/workspace/autogluon...

3 rows × 25 columns

Analyzing an example row ------------------------ Now that we have preprocessed the image column, let's take a look at an example row of data and display the text description and the picture. .. code:: python example_row = train_data.iloc[1] example_row .. parsed-literal:: :class: output Type 2 Name Darling Age 4 Breed1 266 Breed2 0 Gender 1 Color1 1 Color2 0 Color3 0 MaturitySize 2 FurLength 1 Vaccinated 2 Dewormed 2 Sterilized 2 Health 1 Quantity 1 Fee 0 State 41401 RescuerID 01f954cdf61526daf3fbeb8a074be742 VideoAmt 0 Description Darling was born at the back lane of Jalan Alo... PetID a0c1384d1 PhotoAmt 5.0 AdoptionSpeed 3 Images /var/lib/jenkins/workspace/workspace/autogluon... Name: 13114, dtype: object .. code:: python example_row['Description'] .. parsed-literal:: :class: output 'Darling was born at the back lane of Jalan Alor and was foster by a feeder. All his siblings had died of accident. His mother and grandmother had just been spayed. Darling make a great condo/apartment cat. He love to play a lot. He would make a great companion for someone looking for a cat to love.' .. code:: python example_image = example_row['Images'] from IPython.display import Image, display pil_img = Image(filename=example_image) display(pil_img) .. figure:: output_tabular-multimodal_e625cb_24_0.jpg The PetFinder dataset is fairly large. For the purposes of the tutorial, we will sample 500 rows for training. Training on large multi-modal datasets can be very computationally intensive, especially if using the ``best_quality`` preset in AutoGluon. When prototyping, it is recommended to sample your data to get an idea of which models are worth training, then gradually train with larger amounts of data and longer time limits as you would with any other machine learning algorithm. .. code:: python train_data = train_data.sample(500, random_state=0) Constructing the FeatureMetadata -------------------------------- Next, let's see what AutoGluon infers the feature types to be by constructing a FeatureMetadata object from the training data: .. code:: python from autogluon.tabular import FeatureMetadata feature_metadata = FeatureMetadata.from_df(train_data) print(feature_metadata) .. parsed-literal:: :class: output ('float', []) : 1 | ['PhotoAmt'] ('int', []) : 19 | ['Type', 'Age', 'Breed1', 'Breed2', 'Gender', ...] ('object', []) : 4 | ['Name', 'RescuerID', 'PetID', 'Images'] ('object', ['text']) : 1 | ['Description'] Notice that FeatureMetadata automatically identified the column 'Description' as text, so we don't need to manually specify that it is text. In order to leverage images, we need to tell AutoGluon which column contains the image path. We can do this by specifying a FeatureMetadata object and adding the 'image\_path' special type to the image column. We later pass this custom FeatureMetadata to TabularPredictor.fit. .. code:: python feature_metadata = feature_metadata.add_special_types({image_col: ['image_path']}) print(feature_metadata) .. parsed-literal:: :class: output ('float', []) : 1 | ['PhotoAmt'] ('int', []) : 19 | ['Type', 'Age', 'Breed1', 'Breed2', 'Gender', ...] ('object', []) : 3 | ['Name', 'RescuerID', 'PetID'] ('object', ['image_path']) : 1 | ['Images'] ('object', ['text']) : 1 | ['Description'] Specifying the hyperparameters ------------------------------ Next, we need to specify the models we want to train with. This is done via the ``hyperparameters`` argument to TabularPredictor.fit. AutoGluon has a predefined config that works well for multimodal datasets called 'multimodal'. We can access it via: .. code:: python from autogluon.tabular.configs.hyperparameter_configs import get_hyperparameter_config hyperparameters = get_hyperparameter_config('multimodal') hyperparameters .. parsed-literal:: :class: output {'NN_TORCH': {}, 'GBM': [{}, {'extra_trees': True, 'ag_args': {'name_suffix': 'XT'}}, 'GBMLarge'], 'CAT': {}, 'XGB': {}, 'AG_TEXT_NN': {'presets': 'medium_quality_faster_train'}, 'AG_IMAGE_NN': {}, 'VW': {}} This hyperparameter config will train a variety of Tabular models as well as finetune an Electra BERT text model, and a ResNet image model. Fitting with TabularPredictor ----------------------------- Now we will train a TabularPredictor on the dataset, using the feature metadata and hyperparameters we defined prior. This TabularPredictor will leverage tabular, text, and image features all at once. .. code:: python from autogluon.tabular import TabularPredictor predictor = TabularPredictor(label=label).fit( train_data=train_data, hyperparameters=hyperparameters, feature_metadata=feature_metadata, time_limit=900, ) .. parsed-literal:: :class: output No path specified. Models will be saved in: "AutogluonModels/ag-20220601_000416/" Beginning AutoGluon training ... Time limit = 900s AutoGluon will save models to "AutogluonModels/ag-20220601_000416/" AutoGluon Version: 0.4.2b20220531 Python Version: 3.9.13 Operating System: Linux Train Data Rows: 500 Train Data Columns: 24 Label Column: AdoptionSpeed Preprocessing data ... AutoGluon infers your prediction problem is: 'multiclass' (because dtype of label-column == int, but few unique label-values observed). 5 unique label values: [2, 3, 4, 0, 1] If 'multiclass' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression']) Train Data Class Count: 5 Using Feature Generators to preprocess the data ... Fitting AutoMLPipelineFeatureGenerator... Available Memory: 22509.88 MB Train Data (Original) Memory Usage: 0.51 MB (0.0% of available memory) Stage 1 Generators: Fitting AsTypeFeatureGenerator... Note: Converting 1 features to boolean dtype as they only contain 2 unique values. Stage 2 Generators: Fitting FillNaFeatureGenerator... Stage 3 Generators: Fitting IdentityFeatureGenerator... Fitting IdentityFeatureGenerator... Fitting RenameFeatureGenerator... Fitting CategoryFeatureGenerator... Fitting CategoryMemoryMinimizeFeatureGenerator... Fitting TextSpecialFeatureGenerator... Fitting BinnedFeatureGenerator... Fitting DropDuplicatesFeatureGenerator... Fitting TextNgramFeatureGenerator... Fitting CountVectorizer for text features: ['Description'] CountVectorizer fit with vocabulary size = 170 Fitting IdentityFeatureGenerator... Fitting IsNanFeatureGenerator... Stage 4 Generators: Fitting DropUniqueFeatureGenerator... Unused Original Features (Count: 1): ['PetID'] These features were not used to generate any of the output features. Add a feature generator compatible with these features to utilize them. Features can also be unused if they carry very little information, such as being categorical but having almost entirely unique values or being duplicates of other features. These features do not need to be present at inference time. ('object', []) : 1 | ['PetID'] Types of features in original data (raw dtype, special dtypes): ('float', []) : 1 | ['PhotoAmt'] ('int', []) : 18 | ['Type', 'Age', 'Breed1', 'Breed2', 'Gender', ...] ('object', []) : 2 | ['Name', 'RescuerID'] ('object', ['image_path']) : 1 | ['Images'] ('object', ['text']) : 1 | ['Description'] Types of features in processed data (raw dtype, special dtypes): ('category', []) : 2 | ['Name', 'RescuerID'] ('category', ['text_as_category']) : 1 | ['Description'] ('float', []) : 1 | ['PhotoAmt'] ('int', []) : 17 | ['Age', 'Breed1', 'Breed2', 'Gender', 'Color1', ...] ('int', ['binned', 'text_special']) : 24 | ['Description.char_count', 'Description.word_count', 'Description.capital_ratio', 'Description.lower_ratio', 'Description.digit_ratio', ...] ('int', ['bool']) : 1 | ['Type'] ('int', ['text_ngram']) : 171 | ['__nlp__.about', '__nlp__.active', '__nlp__.active and', '__nlp__.adopt', '__nlp__.adopted', ...] ('object', ['image_path']) : 1 | ['Images'] ('object', ['text']) : 1 | ['Description_raw_text'] 0.5s = Fit runtime 23 features in original data used to generate 219 features in processed data. Train Data (Processed) Memory Usage: 0.58 MB (0.0% of available memory) Data preprocessing and feature engineering runtime = 0.51s ... AutoGluon will gauge predictive performance using evaluation metric: 'accuracy' To change this, specify the eval_metric parameter of Predictor() Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 400, Val Rows: 100 Fitting 9 L1 models ... Fitting model: LightGBM ... Training model for up to 899.49s of the 899.49s of remaining time. 0.34 = Validation score (accuracy) 1.13s = Training runtime 0.01s = Validation runtime Fitting model: LightGBMXT ... Training model for up to 898.35s of the 898.35s of remaining time. 0.34 = Validation score (accuracy) 0.76s = Training runtime 0.01s = Validation runtime Fitting model: CatBoost ... Training model for up to 897.57s of the 897.57s of remaining time. 0.3 = Validation score (accuracy) 2.57s = Training runtime 0.01s = Validation runtime Fitting model: XGBoost ... Training model for up to 894.98s of the 894.98s of remaining time. 0.35 = Validation score (accuracy) 1.59s = Training runtime 0.01s = Validation runtime Fitting model: NeuralNetTorch ... Training model for up to 893.37s of the 893.37s of remaining time. 0.35 = Validation score (accuracy) 1.72s = Training runtime 0.02s = Validation runtime Fitting model: VowpalWabbit ... Training model for up to 891.62s of the 891.62s of remaining time. 0.24 = Validation score (accuracy) 0.59s = Training runtime 0.03s = Validation runtime Fitting model: LightGBMLarge ... Training model for up to 890.72s of the 890.72s of remaining time. 0.37 = Validation score (accuracy) 2.35s = Training runtime 0.01s = Validation runtime Fitting model: TextPredictor ... Training model for up to 888.36s of the 888.35s of remaining time. Global seed set to 0 Auto select gpus: [0] Using 16bit native Automatic Mixed Precision (AMP) GPU available: True, used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0] | Name | Type | Params ---------------------------------------------------------- 0 | model | MultimodalFusionMLP | 13.7 M 1 | validation_metric | Accuracy | 0 2 | loss_func | CrossEntropyLoss | 0 ---------------------------------------------------------- 13.7 M Trainable params 0 Non-trainable params 13.7 M Total params 27.305 Total estimated model params size (MB) Epoch 0, global step 1: 'val_accuracy' reached 0.24000 (best 0.24000), saving model to '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/TextPredictor/epoch=0-step=1.ckpt' as top 3 Epoch 0, global step 4: 'val_accuracy' reached 0.28000 (best 0.28000), saving model to '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/TextPredictor/epoch=0-step=4.ckpt' as top 3 Epoch 1, global step 5: 'val_accuracy' reached 0.25000 (best 0.28000), saving model to '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/TextPredictor/epoch=1-step=5.ckpt' as top 3 Epoch 1, global step 8: 'val_accuracy' reached 0.27000 (best 0.28000), saving model to '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/TextPredictor/epoch=1-step=8.ckpt' as top 3 Epoch 2, global step 9: 'val_accuracy' reached 0.30000 (best 0.30000), saving model to '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/TextPredictor/epoch=2-step=9.ckpt' as top 3 Epoch 2, global step 12: 'val_accuracy' reached 0.28000 (best 0.30000), saving model to '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/TextPredictor/epoch=2-step=12.ckpt' as top 3 Epoch 3, global step 13: 'val_accuracy' was not in top 3 Epoch 3, global step 16: 'val_accuracy' was not in top 3 Epoch 4, global step 17: 'val_accuracy' was not in top 3 Epoch 4, global step 20: 'val_accuracy' was not in top 3 Epoch 5, global step 21: 'val_accuracy' reached 0.30000 (best 0.30000), saving model to '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/TextPredictor/epoch=5-step=21.ckpt' as top 3 Epoch 5, global step 24: 'val_accuracy' was not in top 3 Epoch 6, global step 25: 'val_accuracy' was not in top 3 Epoch 6, global step 28: 'val_accuracy' was not in top 3 Epoch 7, global step 29: 'val_accuracy' was not in top 3 Auto select gpus: [0] /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-tabular-v3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:91: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`. rank_zero_warn( HPU available: False, using: 0 HPUs Auto select gpus: [0] /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-tabular-v3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:91: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`. rank_zero_warn( HPU available: False, using: 0 HPUs Auto select gpus: [0] /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-tabular-v3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:91: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`. rank_zero_warn( HPU available: False, using: 0 HPUs Auto select gpus: [0] /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-tabular-v3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:91: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`. rank_zero_warn( HPU available: False, using: 0 HPUs 0.3 = Validation score (accuracy) 51.77s = Training runtime 0.58s = Validation runtime Fitting model: ImagePredictor ... Training model for up to 835.89s of the 835.89s of remaining time. /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-tabular-v3/lib/python3.9/site-packages/gluoncv/__init__.py:40: UserWarning: Both `mxnet==1.9.1` and `torch==1.10.2+cu102` are installed. You might encounter increased GPU memory footprint if both framework are used at the same time. warnings.warn(f'Both `mxnet=={mx.__version__}` and `torch=={torch.__version__}` are installed. ' ImagePredictor sets accuracy as default eval_metric for classification problems. The number of requested GPUs is greater than the number of available GPUs.Reduce the number to 1 modified configs( != ): { root.img_cls.model resnet101 != resnet50 root.misc.num_workers 4 != 8 root.misc.seed 42 != 716 root.train.early_stop_max_value 1.0 != inf root.train.batch_size 32 != 16 root.train.early_stop_baseline 0.0 != -inf root.train.epochs 200 != 15 root.train.early_stop_patience -1 != 10 } Saved config to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/ImagePredictor/e8ac7ebc/.trial_0/config.yaml Model resnet50 created, param count: 23518277 AMP not enabled. Training in float32. Disable EMA as it is not supported for now. Start training from [Epoch 0] [Epoch 0] training: accuracy=0.185000 [Epoch 0] speed: 81 samples/sec time cost: 4.703040 [Epoch 0] validation: top1=0.220000 top5=1.000000 [Epoch 0] Current best top-1: 0.220000 vs previous -inf, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/ImagePredictor/e8ac7ebc/.trial_0/best_checkpoint.pkl [Epoch 1] training: accuracy=0.265000 [Epoch 1] speed: 91 samples/sec time cost: 4.208941 [Epoch 1] validation: top1=0.300000 top5=1.000000 [Epoch 1] Current best top-1: 0.300000 vs previous 0.220000, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-tabular-v3/docs/_build/eval/tutorials/tabular_prediction/AutogluonModels/ag-20220601_000416/models/ImagePredictor/e8ac7ebc/.trial_0/best_checkpoint.pkl [Epoch 2] training: accuracy=0.320000 [Epoch 2] speed: 91 samples/sec time cost: 4.215491 [Epoch 2] validation: top1=0.260000 top5=1.000000 [Epoch 3] training: accuracy=0.335000 [Epoch 3] speed: 91 samples/sec time cost: 4.219242 [Epoch 3] validation: top1=0.200000 top5=1.000000 [Epoch 4] training: accuracy=0.350000 [Epoch 4] speed: 90 samples/sec time cost: 4.246616 [Epoch 4] validation: top1=0.230000 top5=1.000000 [Epoch 5] training: accuracy=0.352500 [Epoch 5] speed: 90 samples/sec time cost: 4.240837 [Epoch 5] validation: top1=0.230000 top5=1.000000 [Epoch 6] training: accuracy=0.425000 [Epoch 6] speed: 89 samples/sec time cost: 4.277815 [Epoch 6] validation: top1=0.240000 top5=1.000000 [Epoch 7] training: accuracy=0.400000 [Epoch 7] speed: 89 samples/sec time cost: 4.279178 [Epoch 7] validation: top1=0.170000 top5=1.000000 [Epoch 8] training: accuracy=0.415000 [Epoch 8] speed: 89 samples/sec time cost: 4.301166 [Epoch 8] validation: top1=0.220000 top5=1.000000 [Epoch 9] training: accuracy=0.415000 [Epoch 9] speed: 89 samples/sec time cost: 4.301456 [Epoch 9] validation: top1=0.220000 top5=1.000000 [Epoch 10] training: accuracy=0.410000 [Epoch 10] speed: 88 samples/sec time cost: 4.327386 [Epoch 10] validation: top1=0.230000 top5=1.000000 [Epoch 11] training: accuracy=0.430000 [Epoch 11] speed: 88 samples/sec time cost: 4.344148 [Epoch 11] validation: top1=0.220000 top5=1.000000 [Epoch 12] EarlyStop after 10 epochs: no better than 0.3 Applying the state from the best checkpoint... 0.3 = Validation score (accuracy) 61.3s = Training runtime 0.94s = Validation runtime Auto select gpus: [0] /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-tabular-v3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:91: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`. rank_zero_warn( HPU available: False, using: 0 HPUs Fitting model: WeightedEnsemble_L2 ... Training model for up to 360.0s of the 769.91s of remaining time. 0.37 = Validation score (accuracy) 0.2s = Training runtime 0.0s = Validation runtime AutoGluon training complete, total runtime = 130.31s ... Best model: "WeightedEnsemble_L2" TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20220601_000416/") After the predictor is fit, we can take a look at the leaderboard and see the performance of the various models: .. code:: python leaderboard = predictor.leaderboard(test_data) .. parsed-literal:: :class: output Auto select gpus: [0] /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-tabular-v3/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:91: PossibleUserWarning: `max_epochs` was not set. Setting it to 1000 epochs. To train without an epoch limit, set `max_epochs=-1`. rank_zero_warn( HPU available: False, using: 0 HPUs .. parsed-literal:: :class: output model score_test score_val pred_time_test pred_time_val fit_time pred_time_test_marginal pred_time_val_marginal fit_time_marginal stack_level can_infer fit_order 0 LightGBMLarge 0.323775 0.37 0.015434 0.006781 2.350454 0.015434 0.006781 2.350454 1 True 7 1 WeightedEnsemble_L2 0.323775 0.37 0.317460 0.007168 2.554141 0.302025 0.000387 0.203686 2 True 10 2 NeuralNetTorch 0.319773 0.35 0.062715 0.019647 1.723534 0.062715 0.019647 1.723534 1 True 5 3 CatBoost 0.319106 0.30 0.026970 0.013039 2.572865 0.026970 0.013039 2.572865 1 True 3 4 LightGBMXT 0.315772 0.34 0.038583 0.006673 0.757124 0.038583 0.006673 0.757124 1 True 2 5 ImagePredictor 0.313104 0.30 11.259770 0.937059 61.302684 11.259770 0.937059 61.302684 1 True 9 6 TextPredictor 0.293431 0.30 11.519300 0.583328 51.770657 11.519300 0.583328 51.770657 1 True 8 7 XGBoost 0.292431 0.35 0.044904 0.012723 1.591348 0.044904 0.012723 1.591348 1 True 4 8 LightGBM 0.289763 0.34 0.020977 0.006173 1.127079 0.020977 0.006173 1.127079 1 True 1 9 VowpalWabbit 0.278760 0.24 0.663475 0.027602 0.588581 0.663475 0.027602 0.588581 1 True 6 That's all it takes to train with image, text, and tabular data (at the same time) using AutoGluon! For an in-depth tutorial on text + tabular multimodal functionality, refer to :ref:`sec_tabularprediction_text_multimodal`. For more tutorials, refer to :ref:`sec_tabularquick` and :ref:`sec_tabularadvanced`.