AutoGluon: AutoML for Text, Image, and Tabular Data ==================================================== .. |ReleaseVersion| image:: https://img.shields.io/badge/doc%20release-v0.4.2-blue :target: https://auto.gluon.ai/dev/versions.html :scale: 100% .. |StableVersion| image:: https://img.shields.io/github/v/release/awslabs/autogluon?color=blue&label=stable%20release&sort=semver :target: https://auto.gluon.ai/stable/index.html :scale: 100% .. |PythonVersion| image:: https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9-blue :target: https://pypi.org/project/autogluon/ .. |GitHub| image:: https://img.shields.io/github/stars/awslabs/autogluon?style=social :target: https://github.com/awslabs/autogluon/stargazers .. |Twitter| image:: https://img.shields.io/twitter/follow/autogluon?style=social :target: https://twitter.com/autogluon .. |Downloads| image:: https://pepy.tech/badge/autogluon/month :target: https://pepy.tech/project/autogluon .. |License| image:: https://img.shields.io/github/license/awslabs/autogluon?color=blue :target: https://github.com/awslabs/autogluon/blob/master/LICENSE |ReleaseVersion| |StableVersion| |PythonVersion| |License| |Downloads| |GitHub| |Twitter| `AutoGluon` enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, `AutoGluon` enables you to: - Quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. - Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. - Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. - Easily improve/tune your bespoke models and data pipelines, or customize `AutoGluon` for your use-case. .. note:: Example using AutoGluon to train and deploy a high-performance model on a tabular dataset: >>> from autogluon.tabular import TabularDataset, TabularPredictor >>> train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') >>> test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') >>> predictor = TabularPredictor(label='class').fit(train_data=train_data) >>> predictions = predictor.predict(test_data) AutoGluon can be applied just as easily for prediction tasks with image or text data. Installation ------------ .. include:: install-include.rst Quick Start ----------- .. raw:: html :file: static/application.html Tutorials --------- .. container:: cards .. card:: :title: Tabular Prediction :link: tutorials/tabular_prediction/index.html How to predict variables in tabular datasets. .. card:: :title: Image Prediction :link: tutorials/image_prediction/index.html How to classify images into various categories. .. card:: :title: Object Detection :link: tutorials/object_detection/index.html How to detect objects and their location in images. .. card:: :title: Text Prediction :link: tutorials/text_prediction/index.html How to solve NLP problems via supervised learning from raw text. .. card:: :title: Multimodal Prediction :link: tutorials/tabular_prediction/tabular-multimodal.html How to solve problems that contain Image, Text, and Tabular features at the same time. .. toctree:: :maxdepth: 2 :hidden: tutorials/tabular_prediction/index tutorials/image_prediction/index tutorials/object_detection/index tutorials/text_prediction/index tutorials/tabular_prediction/tabular-multimodal tutorials/cloud_fit_deploy/index cheatsheet.rst api/autogluon.predictor api/autogluon.features api/autogluon.tabular.models