Adding a custom metric to AutoGluon¶
Tip: If you are new to AutoGluon, review Predicting Columns in a Table - Quick Start to learn the basics of the AutoGluon API.
This tutorial describes how to add a custom evaluation metric to AutoGluon that is used to inform validation scores, model ensembling, hyperparameter tuning, and more.
In this example, we show a variety of evaluation metrics and how to convert them to an AutoGluon Scorer, which can then be passed to AutoGluon models and predictors.
First, we will randomly generate 10 ground truth labels and predictions, and show how to calculate metric scores from them.
import numpy as np
y_true = np.random.randint(low=0, high=2, size=10)
y_pred = np.random.randint(low=0, high=2, size=10)
print(f'y_true: {y_true}')
print(f'y_pred: {y_pred}')
y_true: [0 0 0 1 0 0 1 0 0 1]
y_pred: [0 1 0 0 1 1 1 0 1 1]
Ensuring Metric is Serializable¶
You must define your custom metric in a separate python file that is
imported for it to be serializable (able to be pickled). If this is not
done, AutoGluon will crash during fit when trying to parallelize model
training with Ray. In the below example, you would want to create a new
python file such as my_metrics.py
with ag_accuracy_scorer
defined in it, and then use it via
from my_metrics import ag_accuracy_scorer
.
If your metric is not serializable, you will get many errors similar to:
_pickle.PicklingError: Can't pickle
. Refer to
https://github.com/awslabs/autogluon/issues/1637 for an example.
The custom metrics in this tutorial are not serializable for ease of
demonstration. If best_quality
preset was used, it would crash.
Custom Accuracy Metric¶
We will start with calculating accuracy. A prediction is correct if the predicted value is the same as the true value, otherwise it is wrong.
import sklearn.metrics
sklearn.metrics.accuracy_score(y_true, y_pred)
0.5
Now, let’s convert this evaluation metric to an AutoGluon Scorer.
We do this by calling autogluon.core.metrics.make_scorer
.
from autogluon.core.metrics import make_scorer
ag_accuracy_scorer = make_scorer(name='accuracy',
score_func=sklearn.metrics.accuracy_score,
optimum=1,
greater_is_better=True)
When creating the Scorer, we need to specify a name for the Scorer. This does not need to be any particular value, but is used when printing information about the Scorer during training.
Next, we specify the score_func
. This is the function we want to
wrap, in this case, sklearn’s accuracy_score
function.
We then need to specify the optimum value. This is necessary when
calculating error as opposed to score. Error is calculated as
optimum - score
. It is also useful to identify when a score is
optimal and cannot be improved.
Finally, we need to specify greater_is_better
. In this case,
greater_is_better=True
because the best value returned is 1, and the
worst value returned is less than 1 (0). It is very important to set
this value correctly, otherwise AutoGluon will try to optimize for the
worst model instead of the best.
Once created, the AutoGluon Scorer can be called in the same fashion as the original metric.
ag_accuracy_scorer(y_true, y_pred)
0.5
Custom Mean Squared Error Metric¶
Next, let’s show examples of how to convert regression metrics into Scorers.
First we generate random ground truth labels and their predictions, however this time they are floats instead of integers.
y_true = np.random.rand(10)
y_pred = np.random.rand(10)
print(f'y_true: {y_true}')
print(f'y_pred: {y_pred}')
y_true: [0.55279959 0.55327502 0.14707974 0.88891546 0.35577562 0.3315676
0.78077199 0.86493561 0.56106127 0.17536943]
y_pred: [0.24487331 0.33689217 0.37936802 0.13955546 0.869373 0.99746279
0.02519042 0.82364878 0.20291969 0.67261156]
A common regression metric is Mean Squared Error:
sklearn.metrics.mean_squared_error(y_true, y_pred)
0.24124602971655315
ag_mean_squared_error_scorer = make_scorer(name='mean_squared_error',
score_func=sklearn.metrics.mean_squared_error,
optimum=0,
greater_is_better=False)
In this case, optimum is 0 because this is an error metric.
Additionally, greater_is_better=False
because sklearn reports error
as positive values, and the lower the value is, the better.
A very important point about AutoGluon Scorers is that internally, they
will always report scores in greater_is_better=True
form. This means
if the original metric was greater_is_better=False
, AutoGluon’s
Scorer will flip the value. Therefore, error will be represented as
negative values.
This is done to ensure consistency between different metrics.
ag_mean_squared_error_scorer(y_true, y_pred)
-0.24124602971655315
We can also specify metrics outside of sklearn. For example, below is a minimal implementation of mean squared error:
def mse_func(y_true: np.ndarray, y_pred: np.ndarray) -> float:
return ((y_true - y_pred) ** 2).mean()
mse_func(y_true, y_pred)
0.24124602971655315
All that is required is that the function take two arguments:
y_true
, and y_pred
(or y_pred_proba
), as numpy arrays, and
return a float value.
With the same code as before, we can create an AutoGluon Scorer.
ag_mean_squared_error_custom_scorer = make_scorer(name='mean_squared_error',
score_func=mse_func,
optimum=0,
greater_is_better=False)
ag_mean_squared_error_custom_scorer(y_true, y_pred)
-0.24124602971655315
Custom ROC AUC Metric¶
Here we show an example of a thresholding metric, roc_auc
. A
thresholding metric cares about the relative ordering of predictions,
but not their absolute values.
y_true = np.random.randint(low=0, high=2, size=10)
y_pred_proba = np.random.rand(10)
print(f'y_true: {y_true}')
print(f'y_pred_proba: {y_pred_proba}')
y_true: [1 1 0 1 1 1 0 1 1 1]
y_pred_proba: [0.17323407 0.69676717 0.31715271 0.78399739 0.2506379 0.62731124
0.7077315 0.64879515 0.54951427 0.00808202]
sklearn.metrics.roc_auc_score(y_true, y_pred_proba)
0.375
We will need to specify needs_threshold=True
in order for downstream
models to properly use the metric.
# Score functions that need decision values
ag_roc_auc_scorer = make_scorer(name='roc_auc',
score_func=sklearn.metrics.roc_auc_score,
optimum=1,
greater_is_better=True,
needs_threshold=True)
ag_roc_auc_scorer(y_true, y_pred_proba)
0.375
Using Custom Metrics in TabularPredictor¶
Now that we have created several custom Scorers, let’s use them for training and evaluating models.
For this tutorial, we will be using the Adult Income dataset.
from autogluon.tabular import TabularDataset
train_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv') # can be local CSV file as well, returns Pandas DataFrame
test_data = TabularDataset('https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv') # another Pandas DataFrame
label = 'class' # specifies which column do we want to predict
train_data = train_data.sample(n=1000, random_state=0) # subsample for faster demo
train_data.head(5)
age | workclass | fnlwgt | education | education-num | marital-status | occupation | relationship | race | sex | capital-gain | capital-loss | hours-per-week | native-country | class | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6118 | 51 | Private | 39264 | Some-college | 10 | Married-civ-spouse | Exec-managerial | Wife | White | Female | 0 | 0 | 40 | United-States | >50K |
23204 | 58 | Private | 51662 | 10th | 6 | Married-civ-spouse | Other-service | Wife | White | Female | 0 | 0 | 8 | United-States | <=50K |
29590 | 40 | Private | 326310 | Some-college | 10 | Married-civ-spouse | Craft-repair | Husband | White | Male | 0 | 0 | 44 | United-States | <=50K |
18116 | 37 | Private | 222450 | HS-grad | 9 | Never-married | Sales | Not-in-family | White | Male | 0 | 2339 | 40 | El-Salvador | <=50K |
33964 | 62 | Private | 109190 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 15024 | 0 | 40 | United-States | >50K |
from autogluon.tabular import TabularPredictor
predictor = TabularPredictor(label=label).fit(train_data, hyperparameters='toy')
predictor.leaderboard(test_data, silent=True)
No path specified. Models will be saved in: "AutogluonModels/ag-20220521_052402/"
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20220521_052402/"
AutoGluon Version: 0.4.1b20220521
Python Version: 3.9.12
Operating System: Linux
Train Data Rows: 1000
Train Data Columns: 14
Label Column: class
Preprocessing data ...
AutoGluon infers your prediction problem is: 'binary' (because only two unique label-values observed).
2 unique label values: [' >50K', ' <=50K']
If 'binary' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = >50K, class 0 = <=50K
Note: For your binary classification, AutoGluon arbitrarily selected which label-value represents positive ( >50K) vs negative ( <=50K) class.
To explicitly set the positive_class, either rename classes to 1 and 0, or specify positive_class in Predictor init.
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
Available Memory: 22362.62 MB
Train Data (Original) Memory Usage: 0.59 MB (0.0% of available memory)
Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator...
Note: Converting 1 features to boolean dtype as they only contain 2 unique values.
Stage 2 Generators:
Fitting FillNaFeatureGenerator...
Stage 3 Generators:
Fitting IdentityFeatureGenerator...
Fitting CategoryFeatureGenerator...
Fitting CategoryMemoryMinimizeFeatureGenerator...
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator...
Types of features in original data (raw dtype, special dtypes):
('int', []) : 6 | ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', ...]
('object', []) : 8 | ['workclass', 'education', 'marital-status', 'occupation', 'relationship', ...]
Types of features in processed data (raw dtype, special dtypes):
('category', []) : 7 | ['workclass', 'education', 'marital-status', 'occupation', 'relationship', ...]
('int', []) : 6 | ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', ...]
('int', ['bool']) : 1 | ['sex']
0.1s = Fit runtime
14 features in original data used to generate 14 features in processed data.
Train Data (Processed) Memory Usage: 0.06 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.09s ...
AutoGluon will gauge predictive performance using evaluation metric: 'accuracy'
To change this, specify the eval_metric parameter of Predictor()
Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 800, Val Rows: 200
Fitting 4 L1 models ...
Fitting model: LightGBM ...
0.77 = Validation score (accuracy)
0.62s = Training runtime
0.01s = Validation runtime
Fitting model: CatBoost ...
0.86 = Validation score (accuracy)
0.12s = Training runtime
0.01s = Validation runtime
Fitting model: XGBoost ...
0.84 = Validation score (accuracy)
0.63s = Training runtime
0.01s = Validation runtime
Fitting model: NeuralNetTorch ...
0.83 = Validation score (accuracy)
0.8s = Training runtime
0.01s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
0.88 = Validation score (accuracy)
0.12s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 2.49s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20220521_052402/")
model | score_test | score_val | pred_time_test | pred_time_val | fit_time | pred_time_test_marginal | pred_time_val_marginal | fit_time_marginal | stack_level | can_infer | fit_order | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | WeightedEnsemble_L2 | 0.852493 | 0.88 | 0.259140 | 0.028575 | 1.673222 | 0.002600 | 0.000725 | 0.122696 | 2 | True | 5 |
1 | XGBoost | 0.847784 | 0.84 | 0.025521 | 0.007010 | 0.625670 | 0.025521 | 0.007010 | 0.625670 | 1 | True | 3 |
2 | CatBoost | 0.844406 | 0.86 | 0.012860 | 0.007795 | 0.120379 | 0.012860 | 0.007795 | 0.120379 | 1 | True | 2 |
3 | NeuralNetTorch | 0.829461 | 0.83 | 0.218159 | 0.013044 | 0.804477 | 0.218159 | 0.013044 | 0.804477 | 1 | True | 4 |
4 | LightGBM | 0.780940 | 0.77 | 0.008009 | 0.005702 | 0.616578 | 0.008009 | 0.005702 | 0.616578 | 1 | True | 1 |
We can pass our custom metrics into predictor.leaderboard
via the
extra_metrics
argument:
predictor.leaderboard(test_data, extra_metrics=[ag_roc_auc_scorer, ag_accuracy_scorer], silent=True)
model | score_test | roc_auc | accuracy | score_val | pred_time_test | pred_time_val | fit_time | pred_time_test_marginal | pred_time_val_marginal | fit_time_marginal | stack_level | can_infer | fit_order | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | WeightedEnsemble_L2 | 0.852493 | 0.901063 | 0.852493 | 0.88 | 0.173894 | 0.028575 | 1.673222 | 0.002803 | 0.000725 | 0.122696 | 2 | True | 5 |
1 | XGBoost | 0.847784 | 0.894112 | 0.847784 | 0.84 | 0.023822 | 0.007010 | 0.625670 | 0.023822 | 0.007010 | 0.625670 | 1 | True | 3 |
2 | CatBoost | 0.844406 | 0.863760 | 0.844406 | 0.86 | 0.012625 | 0.007795 | 0.120379 | 0.012625 | 0.007795 | 0.120379 | 1 | True | 2 |
3 | NeuralNetTorch | 0.829461 | 0.885435 | 0.829461 | 0.83 | 0.134645 | 0.013044 | 0.804477 | 0.134645 | 0.013044 | 0.804477 | 1 | True | 4 |
4 | LightGBM | 0.780940 | 0.861131 | 0.780940 | 0.77 | 0.008374 | 0.005702 | 0.616578 | 0.008374 | 0.005702 | 0.616578 | 1 | True | 1 |
We can also pass our custom metric into the Predictor itself by
specifying it during initialization via the eval_metric
parameter:
predictor_custom = TabularPredictor(label=label, eval_metric=ag_roc_auc_scorer).fit(train_data, hyperparameters='toy')
predictor_custom.leaderboard(test_data, silent=True)
No path specified. Models will be saved in: "AutogluonModels/ag-20220521_052405/"
Beginning AutoGluon training ...
AutoGluon will save models to "AutogluonModels/ag-20220521_052405/"
AutoGluon Version: 0.4.1b20220521
Python Version: 3.9.12
Operating System: Linux
Train Data Rows: 1000
Train Data Columns: 14
Label Column: class
Preprocessing data ...
AutoGluon infers your prediction problem is: 'binary' (because only two unique label-values observed).
2 unique label values: [' >50K', ' <=50K']
If 'binary' is not the correct problem_type, please manually specify the problem_type parameter during predictor init (You may specify problem_type as one of: ['binary', 'multiclass', 'regression'])
Selected class <--> label mapping: class 1 = >50K, class 0 = <=50K
Note: For your binary classification, AutoGluon arbitrarily selected which label-value represents positive ( >50K) vs negative ( <=50K) class.
To explicitly set the positive_class, either rename classes to 1 and 0, or specify positive_class in Predictor init.
Using Feature Generators to preprocess the data ...
Fitting AutoMLPipelineFeatureGenerator...
Available Memory: 22205.43 MB
Train Data (Original) Memory Usage: 0.59 MB (0.0% of available memory)
Inferring data type of each feature based on column values. Set feature_metadata_in to manually specify special dtypes of the features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator...
Note: Converting 1 features to boolean dtype as they only contain 2 unique values.
Stage 2 Generators:
Fitting FillNaFeatureGenerator...
Stage 3 Generators:
Fitting IdentityFeatureGenerator...
Fitting CategoryFeatureGenerator...
Fitting CategoryMemoryMinimizeFeatureGenerator...
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator...
Types of features in original data (raw dtype, special dtypes):
('int', []) : 6 | ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', ...]
('object', []) : 8 | ['workclass', 'education', 'marital-status', 'occupation', 'relationship', ...]
Types of features in processed data (raw dtype, special dtypes):
('category', []) : 7 | ['workclass', 'education', 'marital-status', 'occupation', 'relationship', ...]
('int', []) : 6 | ['age', 'fnlwgt', 'education-num', 'capital-gain', 'capital-loss', ...]
('int', ['bool']) : 1 | ['sex']
0.1s = Fit runtime
14 features in original data used to generate 14 features in processed data.
Train Data (Processed) Memory Usage: 0.06 MB (0.0% of available memory)
Data preprocessing and feature engineering runtime = 0.08s ...
AutoGluon will gauge predictive performance using evaluation metric: 'roc_auc'
This metric expects predicted probabilities rather than predicted class labels, so you'll need to use predict_proba() instead of predict()
To change this, specify the eval_metric parameter of Predictor()
Automatically generating train/validation split with holdout_frac=0.2, Train Rows: 800, Val Rows: 200
Fitting 4 L1 models ...
Fitting model: LightGBM ...
0.85 = Validation score (roc_auc)
0.1s = Training runtime
0.01s = Validation runtime
Fitting model: CatBoost ...
0.8693 = Validation score (roc_auc)
0.04s = Training runtime
0.01s = Validation runtime
Fitting model: XGBoost ...
0.8585 = Validation score (roc_auc)
0.03s = Training runtime
0.01s = Validation runtime
Fitting model: NeuralNetTorch ...
0.8504 = Validation score (roc_auc)
0.41s = Training runtime
0.01s = Validation runtime
Fitting model: WeightedEnsemble_L2 ...
0.8753 = Validation score (roc_auc)
0.4s = Training runtime
0.0s = Validation runtime
AutoGluon training complete, total runtime = 1.16s ... Best model: "WeightedEnsemble_L2"
TabularPredictor saved. To load, use: predictor = TabularPredictor.load("AutogluonModels/ag-20220521_052405/")
model | score_test | score_val | pred_time_test | pred_time_val | fit_time | pred_time_test_marginal | pred_time_val_marginal | fit_time_marginal | stack_level | can_infer | fit_order | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | WeightedEnsemble_L2 | 0.897780 | 0.875313 | 0.047558 | 0.023081 | 0.565223 | 0.002745 | 0.001091 | 0.397152 | 2 | True | 5 |
1 | XGBoost | 0.894331 | 0.858534 | 0.023974 | 0.006990 | 0.029271 | 0.023974 | 0.006990 | 0.029271 | 1 | True | 3 |
2 | CatBoost | 0.887425 | 0.869325 | 0.012493 | 0.008796 | 0.038473 | 0.012493 | 0.008796 | 0.038473 | 1 | True | 2 |
3 | NeuralNetTorch | 0.884256 | 0.850375 | 0.133312 | 0.012949 | 0.405399 | 0.133312 | 0.012949 | 0.405399 | 1 | True | 4 |
4 | LightGBM | 0.870968 | 0.849980 | 0.008346 | 0.006204 | 0.100327 | 0.008346 | 0.006204 | 0.100327 | 1 | True | 1 |
That’s all it takes to create and use custom metrics in AutoGluon!
If you create a custom metric, consider submitting a PR so that we can add it officially to AutoGluon!
For a tutorial on implementing custom models in AutoGluon, refer to Adding a custom model to AutoGluon.
For more tutorials, refer to Predicting Columns in a Table - Quick Start and Predicting Columns in a Table - In Depth.