Source code for autogluon.tabular.models.xgboost.xgboost_model
import time
import logging
import psutil
from autogluon.common.features.types import R_BOOL, R_INT, R_FLOAT, R_CATEGORY
from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
from autogluon.core.constants import MULTICLASS, REGRESSION, SOFTCLASS, PROBLEM_TYPES_CLASSIFICATION
from autogluon.core.models import AbstractModel
from autogluon.core.models._utils import get_early_stopping_rounds
from autogluon.core.utils import try_import_xgboost
from autogluon.core.utils.exceptions import NotEnoughMemoryError
from . import xgboost_utils
from .hyperparameters.parameters import get_param_baseline
from .hyperparameters.searchspaces import get_default_searchspace
logger = logging.getLogger(__name__)
[docs]class XGBoostModel(AbstractModel):
    """
    XGBoost model: https://xgboost.readthedocs.io/en/latest/
    Hyperparameter options: https://xgboost.readthedocs.io/en/latest/parameter.html
    """
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._ohe_generator = None
        self._xgb_model_type = None
    def _set_default_params(self):
        default_params = get_param_baseline(problem_type=self.problem_type, num_classes=self.num_classes)
        for param, val in default_params.items():
            self._set_default_param_value(param, val)
    def _get_default_searchspace(self):
        return get_default_searchspace(problem_type=self.problem_type, num_classes=self.num_classes)
    def _get_default_auxiliary_params(self) -> dict:
        default_auxiliary_params = super()._get_default_auxiliary_params()
        extra_auxiliary_params = dict(
            valid_raw_types=[R_BOOL, R_INT, R_FLOAT, R_CATEGORY],
        )
        default_auxiliary_params.update(extra_auxiliary_params)
        return default_auxiliary_params
    # Use specialized XGBoost metric if available (fast), otherwise use custom func generator
    def get_eval_metric(self):
        eval_metric = xgboost_utils.convert_ag_metric_to_xgbm(ag_metric_name=self.stopping_metric.name, problem_type=self.problem_type)
        if eval_metric is None:
            eval_metric = xgboost_utils.func_generator(metric=self.stopping_metric, is_higher_better=True, needs_pred_proba=not self.stopping_metric.needs_pred, problem_type=self.problem_type)
        return eval_metric
    def _preprocess(self, X, is_train=False, max_category_levels=None, **kwargs):
        X = super()._preprocess(X=X, **kwargs)
        if self._ohe_generator is None:
            self._ohe_generator = xgboost_utils.OheFeatureGenerator(max_levels=max_category_levels)
        if is_train:
            self._ohe_generator.fit(X)
        X = self._ohe_generator.transform(X)
        return X
    def _fit(self,
             X,
             y,
             X_val=None,
             y_val=None,
             time_limit=None,
             num_gpus=0,
             num_cpus=None,
             sample_weight=None,
             sample_weight_val=None,
             verbosity=2,
             **kwargs):
        # TODO: utilize sample_weight_val in early-stopping if provided
        start_time = time.time()
        ag_params = self._get_ag_params()
        params = self._get_model_params()
        if num_cpus:
            params['n_jobs'] = num_cpus
        max_category_levels = params.pop('proc.max_category_levels', 100)
        if verbosity <= 2:
            verbose = False
            log_period = None
        elif verbosity == 3:
            verbose = True
            log_period = 50
        else:
            verbose = True
            log_period = 1
        X = self.preprocess(X, is_train=True, max_category_levels=max_category_levels)
        num_rows_train = X.shape[0]
        eval_set = []
        eval_metric = self.get_eval_metric()
        if X_val is None:
            early_stopping_rounds = None
            eval_set = None
        else:
            X_val = self.preprocess(X_val, is_train=False)
            eval_set.append((X_val, y_val))
            early_stopping_rounds = ag_params.get('ag.early_stop', 'adaptive')
            if isinstance(early_stopping_rounds, (str, tuple, list)):
                early_stopping_rounds = self._get_early_stopping_rounds(num_rows_train=num_rows_train, strategy=early_stopping_rounds)
        if num_gpus != 0:
            params['tree_method'] = 'gpu_hist'
            if 'gpu_id' not in params:
                params['gpu_id'] = 0
        elif 'tree_method' not in params:
            params['tree_method'] = 'hist'
        try_import_xgboost()
        from .callbacks import EarlyStoppingCustom
        from xgboost.callback import EvaluationMonitor
        callbacks = []
        if eval_set is not None:
            if log_period is not None:
                callbacks.append(EvaluationMonitor(period=log_period))
            callbacks.append(EarlyStoppingCustom(early_stopping_rounds, start_time=start_time, time_limit=time_limit, verbose=verbose))
        from xgboost import XGBClassifier, XGBRegressor
        model_type = XGBClassifier if self.problem_type in PROBLEM_TYPES_CLASSIFICATION else XGBRegressor
        if 'eval_metric' not in params and params.get('objective') == 'binary:logistic':
            # avoid unnecessary warning from XGBoost v1.3.0
            params['eval_metric'] = 'logloss'
        self.model = model_type(**params)
        self.model.fit(
            X=X,
            y=y,
            eval_set=eval_set,
            eval_metric=eval_metric,
            verbose=False,
            callbacks=callbacks,
            sample_weight=sample_weight
        )
        bst = self.model.get_booster()
        # TODO: Investigate speed-ups from GPU inference
        # bst.set_param({"predictor": "gpu_predictor"})
        self.params_trained['n_estimators'] = bst.best_ntree_limit
    def _predict_proba(self, X, num_cpus=-1, **kwargs):
        X = self.preprocess(X, **kwargs)
        self.model.set_params(n_jobs=num_cpus)
        if self.problem_type == REGRESSION:
            return self.model.predict(X)
        y_pred_proba = self.model.predict_proba(X)
        return self._convert_proba_to_unified_form(y_pred_proba)
    def _get_early_stopping_rounds(self, num_rows_train, strategy='auto'):
        return get_early_stopping_rounds(num_rows_train=num_rows_train, strategy=strategy)
    def _get_num_classes(self, y):
        if self.problem_type == MULTICLASS:
            if self.num_classes is not None:
                num_classes = self.num_classes
            else:
                num_classes = 10  # Guess if not given, can do better by looking at y
        elif self.problem_type == SOFTCLASS:  # TODO: delete this elif if it's unnecessary.
            num_classes = y.shape[1]
        else:
            num_classes = 1
        return num_classes
    def _ag_params(self) -> set:
        return {'ag.early_stop'}
    def _estimate_memory_usage(self, X, **kwargs):
        num_classes = self.num_classes if self.num_classes else 1  # self.num_classes could be None after initalization if it's a regression problem
        data_mem_uasge = get_approximate_df_mem_usage(X).sum()
        approx_mem_size_req = data_mem_uasge * 7 + data_mem_uasge / 4 * num_classes  # TODO: Extremely crude approximation, can be vastly improved
        return approx_mem_size_req
    def _validate_fit_memory_usage(self, **kwargs):
        max_memory_usage_ratio = self.params_aux['max_memory_usage_ratio']
        approx_mem_size_req = self.estimate_memory_usage(**kwargs)
        if approx_mem_size_req > 1e9:  # > 1 GB
            available_mem = psutil.virtual_memory().available
            ratio = approx_mem_size_req / available_mem
            if ratio > (1 * max_memory_usage_ratio):
                logger.warning('\tWarning: Not enough memory to safely train XGBoost model, roughly requires: %s GB, but only %s GB is available...' % (round(approx_mem_size_req / 1e9, 3), round(available_mem / 1e9, 3)))
                raise NotEnoughMemoryError
            elif ratio > (0.2 * max_memory_usage_ratio):
                logger.warning('\tWarning: Potentially not enough memory to safely train XGBoost model, roughly requires: %s GB, but only %s GB is available...' % (round(approx_mem_size_req / 1e9, 3), round(available_mem / 1e9, 3)))
    def _get_default_resources(self):
        # psutil.cpu_count(logical=False) is faster in training than psutil.cpu_count()
        num_cpus = psutil.cpu_count(logical=False)
        num_gpus = 0
        return num_cpus, num_gpus
    def save(self, path: str = None, verbose=True) -> str:
        _model = self.model
        self.model = None
        if _model is not None:
            self._xgb_model_type = _model.__class__
        path = super().save(path=path, verbose=verbose)
        if _model is not None:
            # Halves disk usage compared to .json / .pkl
            _model.save_model(path + 'xgb.ubj')
        self.model = _model
        return path
    @classmethod
    def load(cls, path: str, reset_paths=True, verbose=True):
        model = super().load(path=path, reset_paths=reset_paths, verbose=verbose)
        if model._xgb_model_type is not None:
            model.model = model._xgb_model_type()
            # Much faster to load using .ubj than .json (10x+ speedup)
            model.model.load_model(path + 'xgb.ubj')
            model._xgb_model_type = None
        return model
    def _more_tags(self):
        # `can_refit_full=True` because n_estimators is communicated at end of `_fit`:
        #  self.params_trained['n_estimators'] = bst.best_ntree_limit
        return {'can_refit_full': True}
