Source code for autogluon.tabular.models.lr.lr_model
import logging
import re
import time
import warnings
from collections import defaultdict
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, QuantileTransformer
from autogluon.common.features.types import R_BOOL, R_INT, R_FLOAT, R_CATEGORY, R_OBJECT, S_TEXT_AS_CATEGORY, S_BOOL
from autogluon.core.constants import BINARY, REGRESSION
from .hyperparameters.parameters import get_param_baseline, INCLUDE, IGNORE, ONLY, _get_solver, preprocess_params_set
from .hyperparameters.searchspaces import get_default_searchspace
from .lr_preprocessing_utils import NlpDataPreprocessor, OheFeaturesGenerator
from autogluon.core.models import AbstractModel
from autogluon.core.utils.exceptions import TimeLimitExceeded
logger = logging.getLogger(__name__)
# TODO: Can Bagged LinearModels be combined during inference to 1 model by averaging their weights?
#  What about just always using refit_full model? Should we even bag at all? Do we care that its slightly overfit?
[docs]class LinearModel(AbstractModel):
    """
    Linear model (scikit-learn): https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
    Model backend differs depending on problem_type:
        'binary' & 'multiclass': https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
        'regression': https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
    """
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._pipeline = None
    def _get_model_type(self):
        penalty = self.params.get('penalty', 'L2')
        if self.params_aux.get('use_daal', True):
            # Appears to give 20x training speedup when enabled
            try:
                # TODO: Add more granular switch, currently this affects all future LR models even if they had `use_daal=False`
                from sklearnex.linear_model import LogisticRegression, Ridge, Lasso
                logger.log(15, '\tUsing sklearnex LR backend...')
            except:
                from sklearn.linear_model import LogisticRegression, Ridge, Lasso
        else:
            from sklearn.linear_model import LogisticRegression, Ridge, Lasso
        if self.problem_type == REGRESSION:
            if penalty == 'L2':
                model_type = Ridge
            elif penalty == 'L1':
                model_type = Lasso
            else:
                raise AssertionError(f'Unknown value for penalty "{penalty}" - supported types are ["L1", "L2"]')
        else:
            model_type = LogisticRegression
        return model_type
    def _tokenize(self, s):
        return re.split('[ ]+', s)
    def _get_types_of_features(self, df):
        """ Returns dict with keys: : 'continuous', 'skewed', 'onehot', 'embed', 'language', values = ordered list of feature-names falling into each category.
            Each value is a list of feature-names corresponding to columns in original dataframe.
        """
        continuous_featnames = self._feature_metadata.get_features(valid_raw_types=[R_INT, R_FLOAT], invalid_special_types=[S_BOOL])
        categorical_featnames = self._feature_metadata.get_features(valid_raw_types=[R_CATEGORY, R_OBJECT])
        bool_featnames = self._feature_metadata.get_features(required_special_types=[S_BOOL])
        language_featnames = []  # TODO: Disabled currently, have to pass raw text data features here to function properly
        return self._select_features(df=df,
                                     categorical_featnames=categorical_featnames,
                                     language_featnames=language_featnames,
                                     continuous_featnames=continuous_featnames,
                                     bool_featnames=bool_featnames)
    def _select_features(self, df, **kwargs):
        features_selector = {
            INCLUDE: self._select_features_handle_text_include,
            ONLY: self._select_features_handle_text_only,
            IGNORE: self._select_features_handle_text_ignore,
        }.get(self.params.get('handle_text', IGNORE), self._select_features_handle_text_ignore)
        return features_selector(df=df, **kwargs)
    # TODO: handle collinear features - they will impact results quality
    def _preprocess(self, X, is_train=False, **kwargs):
        if is_train:
            feature_types = self._get_types_of_features(X)
            X = self._preprocess_train(X, feature_types, self.params['vectorizer_dict_size'])
        else:
            X = self._pipeline.transform(X)
        return X
    def _preprocess_train(self, X, feature_types, vect_max_features):
        transformer_list = []
        if feature_types.get('language', None):
            pipeline = Pipeline(steps=[
                ("preparator", NlpDataPreprocessor(nlp_cols=feature_types['language'])),
                ("vectorizer", TfidfVectorizer(ngram_range=self.params['proc.ngram_range'], sublinear_tf=True, max_features=vect_max_features, tokenizer=self._tokenize)),
            ])
            transformer_list.append(('vect', pipeline, feature_types['language']))
        if feature_types.get('onehot', None):
            pipeline = Pipeline(steps=[
                ('generator', OheFeaturesGenerator()),
            ])
            transformer_list.append(('cats', pipeline, feature_types['onehot']))
        if feature_types.get('continuous', None):
            pipeline = Pipeline(steps=[
                ('imputer', SimpleImputer(strategy=self.params['proc.impute_strategy'])),
                ('scaler', StandardScaler())
            ])
            transformer_list.append(('cont', pipeline, feature_types['continuous']))
        if feature_types.get('bool', None):
            pipeline = Pipeline(steps=[
                ('scaler', StandardScaler())
            ])
            transformer_list.append(('bool', pipeline, feature_types['bool']))
        if feature_types.get('skewed', None):
            pipeline = Pipeline(steps=[
                ('imputer', SimpleImputer(strategy=self.params['proc.impute_strategy'])),
                ('quantile', QuantileTransformer(output_distribution='normal')),  # Or output_distribution = 'uniform'
            ])
            transformer_list.append(('skew', pipeline, feature_types['skewed']))
        self._pipeline = ColumnTransformer(transformers=transformer_list)
        return self._pipeline.fit_transform(X)
    def _set_default_params(self):
        default_params = {'random_state': 0, 'fit_intercept': True}
        if self.problem_type != REGRESSION:
            default_params.update({'solver': _get_solver(self.problem_type)})
        default_params.update(get_param_baseline())
        for param, val in default_params.items():
            self._set_default_param_value(param, val)
    def _get_default_searchspace(self):
        return get_default_searchspace(self.problem_type)
    def _fit(self,
             X,
             y,
             time_limit=None,
             num_cpus=-1,
             sample_weight=None,
             **kwargs):
        time_fit_start = time.time()
        X = self.preprocess(X, is_train=True)
        if self.problem_type == BINARY:
            y = y.astype(int).values
        params = {k: v for k, v in self.params.items() if k not in preprocess_params_set}
        if 'n_jobs' not in params:
            if self.problem_type != REGRESSION:
                params['n_jobs'] = num_cpus
        # Ridge/Lasso are using alpha instead of C, which is C^-1
        # https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
        if self.problem_type == REGRESSION and 'alpha' not in params:
            # For numerical reasons, using alpha = 0 with the Lasso object is not advised, so we add epsilon
            params['alpha'] = 1 / (params['C'] if params['C'] != 0 else 1e-8)
            params.pop('C', None)
        logger.log(15, f'Training Model with the following hyperparameter settings:')
        logger.log(15, params)
        max_iter = params.pop('max_iter', 10000)
        # TODO: copy_X=True currently set during regression problem type, could potentially set to False to avoid unnecessary data copy.
        model_cls = self._get_model_type()
        time_fit_model_start = time.time()
        if time_limit is not None:
            time_left = time_limit - (time_fit_model_start - time_fit_start)
            time_left = time_left - 0.2  # Account for 0.2s of overhead
            if time_left <= 0:
                raise TimeLimitExceeded
        else:
            time_left = None
        if time_left is not None and max_iter >= 200 and self.problem_type != REGRESSION:
            max_iter_list = [100, max_iter-100]
        else:
            max_iter_list = [max_iter]
        fit_args = dict(X=X, y=y)
        if sample_weight is not None:
            fit_args['sample_weight'] = sample_weight
        if len(max_iter_list) > 1:
            params['warm_start'] = True  # Force True
        total_iter = 0
        total_iter_used = 0
        total_max_iter = sum(max_iter_list)
        model = model_cls(max_iter=max_iter_list[0], **params)
        early_stop = False
        for i, cur_max_iter in enumerate(max_iter_list):
            if time_left is not None and (i > 0):
                time_spent = time.time() - time_fit_model_start
                time_left_train = time_left - time_spent
                time_per_iter = time_spent / total_iter
                time_to_train_cur_max_iter = time_per_iter * cur_max_iter
                if time_to_train_cur_max_iter > time_left_train:
                    cur_max_iter = min(int(time_left_train / time_per_iter) - 1, cur_max_iter)
                    if cur_max_iter <= 0:
                        logger.warning(f'\tEarly stopping due to lack of time remaining. Fit {total_iter}/{total_max_iter} iters...')
                        break
                    early_stop = True
            model.max_iter = cur_max_iter
            with warnings.catch_warnings():
                # Filter the not-converged warning since we are purposefully training in increments.
                # FIXME: Annoyingly, this doesn't filter the warning on Mac due to how multiprocessing works when n_cpus>1. Unsure how to fix.
                warnings.simplefilter(action='ignore', category=UserWarning)
                model = model.fit(**fit_args)
            total_iter += model.max_iter
            if model.n_iter_ is not None:
                total_iter_used += model.n_iter_[0]
            else:
                total_iter_used += model.max_iter
            if early_stop:
                if total_iter_used == total_iter:  # Not yet converged
                    logger.warning(f'\tEarly stopping due to lack of time remaining. Fit {total_iter}/{total_max_iter} iters...')
                break
        self.model = model
        self.params_trained['max_iter'] = total_iter
    def _select_features_handle_text_include(self, df, categorical_featnames, language_featnames, continuous_featnames, bool_featnames):
        types_of_features = dict()
        types_of_features.update(self._select_continuous(df, continuous_featnames))
        types_of_features.update(self._select_bool(df, bool_featnames))
        types_of_features.update(self._select_categorical(df, categorical_featnames))
        types_of_features.update(self._select_text(df, language_featnames))
        return types_of_features
    def _select_features_handle_text_only(self, df, categorical_featnames, language_featnames, continuous_featnames, bool_featnames):
        types_of_features = dict()
        types_of_features.update(self._select_text(df, language_featnames))
        return types_of_features
    def _select_features_handle_text_ignore(self, df, categorical_featnames, language_featnames, continuous_featnames, bool_featnames):
        types_of_features = dict()
        types_of_features.update(self._select_continuous(df, continuous_featnames))
        types_of_features.update(self._select_bool(df, bool_featnames))
        types_of_features.update(self._select_categorical(df, categorical_featnames))
        return types_of_features
    def _select_categorical(self, df, features):
        return dict(onehot=features)
    def _select_continuous(self, df, features):
        # continuous = numeric features to rescale
        # skewed = features to which we will apply power (ie. log / box-cox) transform before normalization
        types_of_features = defaultdict(list)
        for feature in features:
            if np.abs(df[feature].skew()) > self.params['proc.skew_threshold']:
                types_of_features['skewed'].append(feature)
            else:
                types_of_features['continuous'].append(feature)
        return types_of_features
    def _select_text(self, df, features):
        return dict(language=features)
    def _select_bool(self, df, features):
        return dict(bool=features)
    def _get_default_auxiliary_params(self) -> dict:
        default_auxiliary_params = super()._get_default_auxiliary_params()
        extra_auxiliary_params = dict(
            valid_raw_types=[R_BOOL, R_INT, R_FLOAT, R_CATEGORY],
            ignored_type_group_special=[S_TEXT_AS_CATEGORY],
        )
        default_auxiliary_params.update(extra_auxiliary_params)
        return default_auxiliary_params
